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This work presents the state of the art in hierarchically decomposed multilevel 

optimization. This work is expanded with the inclusion of evidence theory with the 

multilevel framework for the quantification of epistemic uncertainty. The novel method, 

Evidence-Based Multilevel Design optimization, is then used to solve two analytical 

optimization problems. This method is also used to explore the effect of the belief 

structure on the final solution. A methodology is presented to reduce the costs of 

evidence-based optimization through manipulation of the belief structure. In addition, a 

transport aircraft wing is also solved with multilevel optimization without uncertainty. 

This complex, real world optimization problem shows the capability of decomposed 

multilevel framework to reduce costs of solving computationally expensive problems 

with black box analyses. 



www.manaraa.com

 

ii 

ACKNOWLEDGEMENTS 

I would like to thank my research group for their help in this process. Dr. Masoud 

Rais-Rohani’s guidance has been invaluable in this process pushing me forward in my 

work, but also supporting me in the weeks when things went wrong. I would not have 

completed this work without Dr. Saber DorMohammadi’s help in understanding these 

techniques. Dr. Jeff Parrish was invaluable in helping me through the computer 

programming required for this work. 

I would like to thank my parents for their love and encouragement both in raising 

me and in supporting me in my passion for aviation. I would also like to thank my loving 

and supportive wife who has encouraged me through the daily stresses and struggles of 

this degree. 

The financial support for this work was provided by the Mississippi State 

University’s Bagley College of Engineering and Raspet Flight Research Laboratory.   

 



www.manaraa.com

 

iii 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ................................................................................................ ii 

LIST OF TABLES ...............................................................................................................v 

LIST OF FIGURES ........................................................................................................... vi 

CHAPTER 

I. INTRODUCTION .............................................................................................1 

Previous Work ...................................................................................................3 

II. DECOMPOSED MULTILEVEL OPTIMIZATION ........................................8 

An Example of Convergence Using Different Solution Strategies .................15 

III. OPTIMIZATION UNDER UNCERTAINTY .................................................20 

Reliability Based Design Optimization ...........................................................20 

Non-Deterministic Design Optimization Techniques for Epistemic 
Uncertainty ...........................................................................................22 

IV. EPISTEMIC UNCERTAINTY AND EVIDENCE THEORY ........................24 

V. EVIDENCE-BASED MULTILEVEL DESIGN OPTIMIZATION ...............31 

VI. MULTILEVEL OPTIMIZATION WITH UNCERTAINTY ..........................44 

Formulation of Example Problems ..................................................................44 

Problem 1 ...................................................................................................44 

Problem 2 ...................................................................................................49 

On the Effect of Belief Structure .....................................................................52 

Replicating Results with Different Belief Structures .......................................56 

Decreasing Costs through Manipulation of Belief Structures .........................59 

VII. MULTILEVEL OPTIMIZATION OF A TRANSPORT AIRCRAFT 
WING ...................................................................................................62 

Element 11: System-Level Structural Model and Design ................................67 



www.manaraa.com

 

iv 

Element 22 and 33: Macro-Level Structural Design and Buckling 
Model ...................................................................................................74 

Element 34 and 35: Micro-Level Material Model Analysis and Design .........82 

Optimization Framework and Results .............................................................85 

VIII. CONCLUSIONS AND FUTURE WORK ......................................................93 

REFERENCES ..................................................................................................................96 

 



www.manaraa.com

 

v 

LIST OF TABLES 

 2.1 Convergence of single loop optimization ...........................................................18 

 2.2 Convergence of double loop optimization .........................................................19 

 6.1 Summary of results of Problem 1. ......................................................................48 

 6.2 Summary of results from problem 2. .................................................................52 

 6.3 Raw optimum solutions for various belief structures .........................................55 

 6.4 Solutions with weighted mean as point estimate for various belief 
structures ................................................................................................56 

 6.5 Results from belief structures with same Cumulative Plausibility 
Structure .................................................................................................58 

 6.6 Results of belief structure in Figure 6.8 showing reduced cost metrics .............61 

 7.1 Transport Aircraft and Wing Specifications ......................................................70 

 7.2 Material Properties for Wing Components ........................................................73 

 7.3 Material Properties for Face Sheet Components ................................................78 

 7.4 Material Properties for Enhanced Matrix Components ......................................84 

 7.5 Design variable values for Element 11 ..............................................................89 

 7.6 Design variable values of the optimized panels .................................................90 

 7.7 Target and response values for the transport aircraft wing problem ..................92 

 

 



www.manaraa.com

 

vi 

LIST OF FIGURES 

 2.1 Example of a hierarchically decomposed multilevel system ...............................9 

 2.2 Graphical depiction of solution strategies ..........................................................14 

 2.3 Two bar truss free body diagram ........................................................................16 

 2.4 Hierarchical decomposition of the two bar truss problem .................................17 

 4.1 Examples of belief structure forms ....................................................................25 

 4.2 A general belief structure ...................................................................................26 

 4.3 Contributing belief structures for the joint belief structure in Figure 4.4 ..........28 

 4.4 Joint belief structure of x1 and x2 with constraint boundary shown..................28 

 5.1 Diagram of the flow of information for EBMLDO ............................................35 

 5.2 Target-response coordination for characteristic numbers with 𝑃𝑎 = 0 .............37 

 5.3 Target-response coordination for characteristic numbers with 𝑃𝑎 > 0 .............38 

 5.4 Structure used to validate characteristic numbers’ target-response 
process ....................................................................................................39 

 5.5 Belief structures used to test characteristic numbers for 𝑃𝑎 > 0 .......................42 

 6.1 Belief structure used for Problem 1 ....................................................................45 

 6.2 Hierarchical decomposition of Problem 1 in Chapter 2 with uncertainty ..........46 

 6.3 Hierarchical decomposition of Problem 2 ..........................................................50 

 6.4 Belief structure used for problem 2 ....................................................................51 

 6.5 Belief structures tested to determine their effect ................................................53 

 6.6 Comparison of the cumulative plausibility functions for tested belief 
structures ................................................................................................57 



www.manaraa.com

 

vii 

 6.7 The belief structure with the same cumulative plausibility structure from 
the left side as the original belief structure from problem 1. .................58 

 6.8 Belief structure which reduces costs while giving the same optimal 
point ........................................................................................................60 

 7.1 The multiple levels optimized in the transport aircraft wing problem. ..............64 

 7.2 The decomposed framework showing the three levels of the transport 
aircraft wing problem, the corresponding inputs, and the 
variables .................................................................................................65 

 7.3 Two panel group decomposition of the Transport Aircraft Wing 
Problem ..................................................................................................66 

 7.4 The finite element model of the wing ................................................................68 

 7.5 Normalized chordwise lift distribution ..............................................................69 

 7.6 Normalized spanwise lift distribution ................................................................70 

 7.7 Graphical definition of variables in the middle level .........................................74 

 7.8 Comparison of the original panel 1 and its rectangular approximation .............76 

 7.9 Hierarchical decomposition of the two section transport wing problem ............85 

 7.10 The VisualDOC workflow for the Transport Aircraft Wing 
Optimization ...........................................................................................86 



www.manaraa.com

 

1 

CHAPTER I 

INTRODUCTION 

As computational capabilities have matured, there has been a greater focus on 

engineering design optimization. Optimization has always been a computationally costly 

proposition as it requires multiple analyses of a problem, but in recent years, the analyses 

have become increasingly complex with the addition of more high cost “black box” 

analyses such as finite element analysis and computational fluid dynamics analysis. The 

high costs have led to a focus on improving the efficiency of solving a problem. 

Decomposed multilevel optimization is one way to reduce the costs of the problem (Kim 

et al. 2003). 

Multilevel design optimization has been explored as a means to manage complex 

design problems by breaking the large problem into several smaller optimization 

problems. The cost advantages of the decomposition come from the separation of the 

complex analyses. Though more total function calls are needed for a solution, fewer 

analyses are needed because each function call is not running all the analyses but a 

subset. Decomposition also allows isolation of features that may require the problem to 

use a less efficient optimization algorithm (Kim et al. 2003). This allows the other 

elements to use the most computationally efficient algorithm, while the element 

containing the trouble features uses an algorithm suited to its needs. In the all-in-one 

problem, the entire problem would have to use the less efficient optimization technique. 
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The decomposition adds costs in the optimization framework to reduce costs of the total 

analysis. Therefore, there is a cost penalty when low cost analyses are analyzed (such as 

the ones considered in Chapters 2 and 6), but costs are drastically reduced when high cost 

analyses are considered. 

Decomposition of a problem is especially useful when natural divisions exist in 

the original problem. Design variables can then be isolated in separate optimization sub-

problems. The source of the added cost in the optimization framework is that often 

optimization of one sub-problem will lead to solutions that are adverse to another. Thus, 

careful coordination is needed to ensure a cohesive and balanced final result.  

Uncertainty analysis has also become increasingly important in recent years. 

Advances in optimization have led to more efficient designs, but these designs sometimes 

fail when uncertainty is not properly considered. For instance, a design that would be on 

the point of failure if machined exactly to specification or thicker, with a material that is 

as strong or stronger than the assumed material, would fail if either of those assumptions 

were not met. Of course, in industry, a mere specification is not used for machinist 

drawings, but a tolerance. Uncertainty quantification gives a likelihood of failure of a 

design within certain tolerances and with a material which has a distribution for material 

properties. This quantification can then be used in an optimization framework to optimize 

the structure subject to a certain probability that the structure will fail. This type of 

optimization allows for more optimal solutions while still ensuring a reliable product.  

Typically, uncertainty is considered in two different forms: aleatory and 

epistemic. Aleatory uncertainty is the natural variation in a system. It is sometimes 

referred to as irreducible uncertainty because the uncertainty cannot be reduced without 
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changing the system. Aleatory uncertainty is quantified using probability distributions 

such as a Normal distribution (bell curve), Weibull distribution, Uniform distribution, etc. 

Epistemic uncertainty is due to a lack of knowledge of the system. It is sometimes called 

reducible uncertainty because the bounds of the uncertainty can be reduced as more 

knowledge of the system is gained. For example, if there is no knowledge of a system, no 

one can say what the value of a certain parameter is. But the value of that parameter for 

that system can be guessed if there is knowledge of the type of the system. A general 

interval for the parameter can be hypothesized by comparing this system to similar 

systems, adding a margin of error in consideration of how this system varies from those 

known. By running experiments, samples are gathered giving an incomplete, but more 

certain idea about the parameter’s magnitude. With further experiments, experts can give 

more certain intervals of the parameter’s value and its likelihood of being in each 

interval. If enough experimental evidence is gathered, an accurate probability distribution 

can be formed, at which point the uncertainty would be aleatory and irreducible. 

Uncertainty quantification adds computational costs to any system. No longer is 

any variable a mere value, but a distribution or an interval structure requiring multiple 

values to accurately quantify. The accurate combination and propagation of these 

multiple values adds to the computational costs and may require multiple function calls to 

ascertain. Thus, any way to reduce computational costs would be beneficial to offset the 

addition costs incurred by consideration of uncertainty. 

Previous Work 

Multilevel design optimization with analytical target cascading (ATC) was first 

proposed by Michelena et al. (1999). This work used consistency constraints to ensure 
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convergence. Kim et al. (2003) proposed a relaxed formulation of target cascading in 

which the summation of inconsistencies between targets and responses at a certain level 

are added to the objective function at that level to encourage convergence. This simple 

linear penalty function was inadequate, so it was replaced by more complex penalty 

functions. Michalek and Papalambros (2005) used a quadratic penalty function which 

multiplied the inconsistencies by a weight factor before squaring them. This weight factor 

allowed the penalty to be better matched to the objective function at the beginning of the 

optimization and increased as the optimization proceeded. Kim et al. (2006) proposed the 

use of a Lagrangian penalty function. This penalty used a Lagrangian multiplier to 

increase the penalty on the simple linear penalty. Tosserams et al. (2006) combined the 

quadratic and Lagrangian penalties to form an augmented Lagrangian penalty that 

possessed the advantages of each penalty function. DorMohammadi and Rais-Rohani 

(2013) proposed the use of an augmented Lagrangian with exponential penalty function 

which uses the normal exponential of the inconsistencies multiplied by weights and 

Lagrangian multipliers as the penalty function. 

Analytical target cascading has been used to solve several engineering problems. 

Kim et al. (2002) used ATC with variable linear consistency constraint to optimize a 

simple model of a class VI truck. Louca et al. (2002) used ATC with variable consistency 

constraint in the optimization of an advanced ground vehicle. Allison et al. (2005) used 

ATC with a quadratic penalty to optimize the design of an electric water pump. Allison et 

al. (2006) solved a simple aircraft design problem using ATC with a quadratic penalty. In 

2007, Tosserams et al. solved a speed reducer using ATC with an Augmented Lagrangian 
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penalty function. DorMohammadi et al. (2014) used ATC with an exponential penalty 

function to optimize a sandwich composite plate reinforced with carbon nano-fibers. 

Klir and Smith (2001) showed that evidence theory to be more general than other 

methods of quantifying epistemic uncertainty. Evidence theory was first proposed by 

Demster in 1968. Shafer refined it into the theory we know today in 1976. Thus, evidence 

theory is often referred to as Demster-Shafer Theory or Demster-Shafer theory of 

evidential reasoning. While evidence theory saw use in artificial intelligence and other 

fields, it has only recently been used in engineering. Bae et al. (2004) compared evidence 

theory, possibility theory, and classical probability theory in the prediction of deflection 

of a three bar truss finite element model. Vasile (2005) used evidence theory in the 

preliminary planning of a simulated space mission to quantify certain parameters that are 

not well defined. Bae et al. (2006) used evidence theory in prediction of tip deflection of 

a finite element model of a simulated wing.  

Uncertainty quantification and engineering design optimization have been 

combined using several different uncertainty quantification methods. Enevoldsen and 

Sorensen (1994) first applied statistical analysis to the optimization of structures. Tu et al. 

(1999) presented a new method for RBDO which reduced costs over earlier efforts. 

Nikolaidis et al. (2004) demonstrated design optimization using possibility theory in 

possibility based design optimization (PBDO). Agarwal et al. (2004) integrated evidence 

theory and design optimization. Mourelatos and Zhou (2006) formalized the use of 

evidence theory in design optimization in a method called evidence based design 

optimization (EBDO). Youn et al. (2006) used Bayesian theory in design optimization in 

a method known as Bayesian reliability based design optimization (BRBDO). 
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Du and Chen (2002) used RBDO in the optimization of a car’s side structure 

against impact. Choi et al. (2004) extended Du and Chen’s 2002 work by using PBDO to 

solve the car side impact problem. McDowell (2007) explored the use of RBDO in 

integrated computational materials engineering (ICME). Youn et al. (2007) used PBDO 

in the design of a piston-cylinder system. In 2012, Salehghaffari and Rais-Rohani used 

evidence theory in the optimization of a cylinder under compression with uncertain 

material properties. Rouhi and Rais-Rohani (2013) used RBDO in the optimization of a 

nano reinforced composite cylinder under compressive loads. 

While reliability based design optimization and multilevel design optimization are 

both fairly common now, little has been done on combining them. Kokkolaras et al. 

(2004) combined ATC using a quadratic penalty with RBDO propagating the uncertain 

targets and responses using first and second moment matching (matching the mean and 

standard deviation of the uncertain targets to the responses assuming a normal 

distribution). Liu et al. (2006) used probabilistic ATC with a linear penalty to solve the 

piston and cylinder problem later solved the Youn et al. (2007) using PBDO. 

DorMohammadi and Rais-Rohani (2012) combined ATC with an augmented Lagrangian 

penalty and RBDO to solve a number of analytical problems with first and second 

moment matching. To the author’s knowledge, no one has combined an epistemic 

uncertainty quantification technique with multilevel optimization. 

Much work has been performed in the area of multilevel design optimization, yet 

those in industry still consider it immature. Several obstacles stand in the way of 

multilevel optimization’s use in industry. The goal of this work was to find solutions to 

two of these obstacles, namely the need to address epistemic uncertainty within the 
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multilevel framework and the need for a “real world” example problem solved in the 

multilevel framework. 

The remainder of this thesis is organized as follows: Chapter 2 gives a description 

of multilevel optimization and gives an example of its use. Chapter 3 gives a description 

of optimization under uncertainty and the principles of reliability-based design 

optimization. Chapter 4 gives a description of epistemic uncertainty and how evidence 

theory quantifies that uncertainty. Chapter 5 gives a description of a new method of 

multilevel optimization with evidence theory based uncertainty quantification. Chapter 6 

gives the solution of several problems with epistemic uncertainty and explores the effect 

of belief structure on the solution. Chapter 7 contains the description of a transport 

aircraft wing optimized without uncertainty and gives the results of this problem. Chapter 

8 gives a summary of the research findings and suggestions of future work in this area. 
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CHAPTER II 

DECOMPOSED MULTILEVEL OPTIMIZATION 

Decomposed multilevel optimization is the process of dividing a single large 

optimization problem into multiple smaller, easier to solve problems called elements. The 

goal of this separation is to isolate costly analyses into an element, so their cost is 

incurred less often. The element 𝑖𝑗 represents the 𝑗th element in 𝑖th level of the hierarchy 

as shown in Figure 2.1. Analytical Target Cascading (ATC) is one of several methods 

that can be used to coordinate the element solutions to meet the system-level targets 

(Michelena et al. 1999). In ATC, the hierarchy is established using a single top-level 

element to coordinate the system. The target value, 𝒕𝑖𝑗, emanates from the parent level of 

element 𝑖𝑗. The corresponding response value, 𝒓𝑖𝑗, comes from element 𝑖𝑗 in the level 

below the parent.  A consistency constraint, 𝒄𝑖𝑗 = 𝒕𝑖𝑗 − 𝒓𝑖𝑗, defines the amount of 

agreement between a target and the corresponding response value. The local decision 

variables in element 𝑖𝑗 are defined by vector �̅�𝑖𝑗 which includes a subset of the global 

design variable vector 𝑿 along with added variables 𝒕(𝑖+1)𝑘 and 𝒓𝑖𝑗 should those values 

be needed (Kim et al. 2003). The children, 𝑫𝑖𝑗, of a parent element are the elements on a 

lower level than the parent element with which the parent element shares information. In 

Figure 2.1, the children of Element 22 are Element 3(n+1) and Element 3(n+2). Elements 

can only communicate with their parent, grandparent, children, or grandchildren elements 
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and cannot communicate directly with an element outside its hierarchy. Using the 

example in Figure 2.1, Element 3(n+1) can communicate with Element 22 and Element 

11 directly, but cannot directly communicate with any other element in the hierarchy. 

 

Figure 2.1 Example of a hierarchically decomposed multilevel system 

 

The decomposition of the original problem can follow different forms. For 

instance, an aircraft optimization problem might be decomposed along separate design 

aspects or components focused on wings, fuselage, empennage, and engine with each 

physical component optimized in light of the full aircraft’s goals. Another form of 

decomposition divides the problem along different disciplines. An example using the 

same aircraft would be to decompose the system into aerodynamics, structures, flight 

controls, and propulsion (Kim et al. 2003). In that case, the parent element for the 

optimization would be the aircraft level element. The hierarchy does not have to end at 

the component level as further structural, aerodynamic, and systems decomposition is 

possible for each component.  

To decompose a problem, its objective function must be separable, and the 

constraints must not require excessive shared information. Separability is easily obtained 
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if the objective function is the sum of several components that can be distributed to 

different elements in the decomposition. Each component is individually optimized with 

the knowledge that the system will be at optimum when each component is optimum 

while still satisfying the consistency constraints. Using the example discussed above, the 

empty weight of an aircraft is merely the sum of its components’ weights. Separability is 

more difficult or impossible if the objective function is not a summation.  

The requirement that constraints not require excessive information means that the 

constraints must be compartmentalized in the decomposition. They may depend on 

shared information, but should not be a function of a large amount of shared data. This 

requirement arises from the source of complexity in the multilevel framework, namely 

the coordination of targets and responses. (Kim et al. 2003)  

For most optimization problems, the computational costs depend heavily on the 

complexity of the function evaluations. In decomposed multilevel optimization, the 

coordination also contributes to the computational costs. Thus, decomposition of an 

optimization problem involving simple analytical functions may increase computational 

costs. On the other hand, if an optimization problem with computationally expensive 

functions, such as “black box” analysis tools, is decomposed, then it is possible to reduce 

the computational costs by a considerable amount through a decomposed multilevel 

approach with proper coordination and solution strategy (DorMohammadi et al. 2014). 

The key to any decomposed optimization is careful coordination of targets and 

responses to ensure that the final result is valid. Because the target and associated 

response represent the same quantity in the non-decomposed all-at-once problem, they 

must be equal in any valid decomposed solution. Several methods have been used to 
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coordinate these terms.  Michelena et al. (1999) used a constraint in each element that 

targets and responses be within a certain tolerance (i.e., 𝒄𝑖𝑗 ≅ 0). This formulation for 

element 𝑖𝑗 is expressed as 

 min
�̅�𝑖𝑗 

𝑓𝑖𝑗(�̅�𝑖𝑗) + 𝜺𝑖𝑗  

 𝑠. 𝑡.    𝒈𝑖𝑗(�̅�𝑖𝑗) ≤ 0 
  (2.1) 
            𝒉𝑖𝑗(�̅�𝑖𝑗) = 0 

 ‖𝒄𝑖𝑗‖ = ‖𝒕𝑖𝑗 − 𝒓𝑖𝑗‖ ≤ 𝜺𝑖𝑗 

where �̅�𝑖𝑗 = [𝒙𝑖𝑗 , 𝒓𝑖𝑗 , 𝒕𝑖𝑗 , 𝒕(𝑖+1)𝑘1
, … , 𝒕(𝑖+1)𝑘𝐷𝑖𝑗

] 

where 𝑓𝑖𝑗 is the function being optimized in element 𝑖𝑗, 𝒈𝑖𝑗 is the vector of all inequality 

constraints, 𝒉𝑖𝑗 is the vector of all equality constraints, and 𝒙𝑖𝑗 is the vector of all local 

design variables which belong solely to element 𝑖𝑗. Unfortunately, the formulation in Eq. 

(2.1) slows exploration of the design space because the target and response are 

permanently bound to each other within the set tolerance 𝜺𝑖𝑗 and large weights are needed 

for the penalty added to the objective function to force convergence. This means the 

choice of initial design point can have a great influence on the optimization result and its 

convergence. 

Thus, most coordination strategies use a relaxed formulation in which a term is 

added to the objective function to penalize each element according to the difference 

between target and response (Kim et al. 2003). Using this strategy, Element 𝑖𝑗 is 

formulated as 

 



www.manaraa.com

 

12 

 min
�̅�𝑖𝑗 

𝑓𝑖𝑗(�̅�𝑖𝑗) + 𝜋(𝒄𝑖𝑗 , 𝒄(𝑖+1)𝑘1
, … , 𝒄(𝑖+1)𝑘𝐷𝑖𝑗

)  

 𝑠. 𝑡.    𝒈𝑖𝑗(�̅�𝑖𝑗) ≤ 0  
  (2.2) 
   𝒉𝑖𝑗(�̅�𝑖𝑗) = 0 

where �̅�𝑖𝑗 = [𝒙𝑖𝑗 , 𝒓𝑖𝑗 , 𝒕𝑖𝑗 , 𝒕(𝑖+1)𝑘1
, … , 𝒕(𝑖+1)𝑘𝐷𝑖𝑗

] 

where 𝜋 represents the penalty function. The penalty function should be small for small 

inconsistencies, but increase rapidly for large inconsistencies. Several penalty function 

formulations have been developed including quadratic penalty (Michalek and 

Papalambros 2005), ordinary Lagrangian penalty (Kim et al. 2006), augmented 

Lagrangian penalty (Tosserams et al. 2006), and exponential penalty (DorMohammadi 

and Rais-Rohani 2013). Quadratic penalty function uses a weight factor to increase the 

penalty of inconsistencies through the optimization. Lagrangian penalty function uses an 

updating Lagrangian multiplier to modify the penalties in a more adaptive way. 

Augmented Lagrangian penalty function sums these two methods to create a penalty 

function which is both adaptive and able to steadily increase through the optimization 

process. Hybrid penalty functions, like the Augmented Lagrangian, capture the 

advantages of each penalty function, allowing them to be more useful. 

The exponential penalty function (EPF) formulation is also a hybrid penalty 

function but uses a different function. The base function 𝜓(𝑦) = 𝑒𝑦 − 1 is used for 

target-response coordination, instead of the simple quadratic function used in quadratic or 

Augmented Lagrangian penalty functions. Unlike a quadratic function, the exponential 

formulation is monotonic meaning the equality constraint 𝒄𝑖𝑗 = 𝒕𝑖𝑗 − 𝒓𝑖𝑗 must be 
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replaced with two inequality constraints 𝒄𝑖𝑗 ≤ 𝒕𝑖𝑗 − 𝒓𝑖𝑗 and 𝒄𝑖𝑗 ≥ 𝒕𝑖𝑗 − 𝒓𝑖𝑗 to achieve a 

balanced penalty. The objective function using EPF for element 𝑖𝑗 is formulated as 

 min
�̅�𝑖𝑗 

 𝑓𝑖𝑗(�̅�𝑖𝑗) + {
𝝁𝑖𝑗

𝒂𝑖𝑗
[𝑒𝒂𝑖𝑗(𝒕𝑖𝑗−𝒓𝑖𝑗) − 1] +

𝜸𝑖𝑗

𝒃𝑖𝑗
[𝑒𝒃𝑖𝑗(𝒓𝑖𝑗−𝒕𝑖𝑗) − 1]} +

∑ {
𝝁(𝑖+1)𝑘

𝒂(𝑖+1)𝑘
[𝑒𝒂(𝑖+1)𝑘(𝒕(𝑖+1)𝑘−𝒓(𝑖+1)𝑘) − 1] +

𝜸(𝑖+1)𝑘

𝒃(𝑖+1)𝑘
[𝑒𝒃(𝑖+1)𝑘(𝒓(𝑖+1)𝑘−𝒕(𝑖+1)𝑘) − 1]}𝑘∈𝐷𝑖𝑗

 (2.3) 

where 𝝁𝑖𝑗, 𝜸𝑖𝑗, 𝝁(𝑖+1)𝑘, and 𝜸(𝑖+1)𝑘 are multipliers, 𝒂𝑖𝑗, 𝒃𝑖𝑗, 𝒂(𝑖+1)𝑘, and 𝒃(𝑖+1)𝑘  are 

weight factors, and 𝑫𝑖𝑗 is the set of all children of element 𝑖𝑗. For the formulation 

considered in this study, the multipliers are updated using the formulas 𝝁𝑖𝑗
𝑛+1 =

𝝁𝑖𝑗
𝑛 𝑒𝒂𝑖𝑗

𝑛 (𝒕𝑖𝑗
𝑛 −𝒓𝑖𝑗

𝑛 ) and 𝜸𝑖𝑗
𝑛+1 = 𝜸𝑖𝑗

𝑛 𝑒𝒃𝑖𝑗
𝑛 (𝒓𝑖𝑗

𝑛 −𝒕𝑖𝑗
𝑛 ) and the weight factors are updated as 𝒂𝑖𝑗

𝑛+1 =

𝛽 𝒂𝑖𝑗
𝑛  and 𝒃𝑖𝑗

𝑛+1 = 𝛽 𝒃𝑖𝑗
𝑛  where 𝛽 ≥ 1 if 𝒄𝑖𝑗

𝑛 > 𝜆 𝒄𝑖𝑗
𝑛−1 with 𝑛 denoting the current 

iteration. The updating of the weight factors increases the penalty of uncoordinated 

targets and responses as the process continues. This study looked at both single-loop and 

double-loop coordination strategies (DorMohammadi and Rais-Rohani 2013).  

In the single-loop strategy, the multipliers and weight factors are updated in every 

iteration as shown in Figure 2.2 (a). This updating approach causes the weights to 

increase faster and the multipliers to be more responsive. This leads to faster 

convergence, but sometimes can cause premature convergence if the problem is not well 

behaved and the weights become too large to allow for continued optimization.  

The double loop strategy updates the multipliers and weight factors only after 

convergence of the inner loop, defined as ‖∑ 𝑓𝑛(�̅�𝑖𝑗) − ∑ 𝑓𝑛−1(�̅�𝑖𝑗) ‖ ∀ 𝑖𝑗 < 𝜏, is found 

for the current set of multipliers and weight factors. This is depicted in Figure 2.2 (b). 

Because the weights and multipliers are updated less often, the solutions are 
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computationally more expensive but less prone to premature convergence and are 

affected less by changes in the initial weights and the updating factor. For both 

formulations, convergence is said to be achieved when ‖𝒄𝑖𝑗
𝑛 − 𝒄𝑖𝑗

𝑛−1‖  < 𝜏 where ‖𝑎‖ 

denotes the absolute value of 𝑎 and 𝜏 is the convergence tolerance.  

 

Figure 2.2 Graphical depiction of solution strategies 

(a) Single loop 
(b) Double loop 

In order for the target-response interaction to work, the targets and responses 

need to be normalized. Normalization allows for the same relative weight to be placed on 

all discrepancies regardless of the scale of the actual response quantities. It also allows 

the updating of multipliers to work properly. Normalization can be achieved in two ways: 

by using some normalization scheme or by manipulating units to give roughly normalized 

variables. The normalization scheme used here is defined as 
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 𝒕𝑖𝑗
𝑁 =

𝒕𝑖𝑗−𝒕𝑖𝑗
𝐿

𝒕𝑖𝑗
𝑈−𝒕𝑖𝑗

𝐿   ;      𝒓𝑖𝑗
𝑁 =

𝒓𝑖𝑗−𝒓𝑖𝑗
𝐿

𝒓𝑖𝑗
𝑈−𝒓𝑖𝑗

𝐿  (2.4) 

where superscripts 𝑁, 𝐿, and 𝑈 refer to normalized, upper, and lower values respectively. 

Though not explicitly denoted, the normalized values are used in all calculations of 

penalty functions, updating of parameters, and convergence criteria.  

The updating of multipliers relies heavily on a normalized consistency constraint. 

The multipliers increase the penalty on discrepancies in an asymmetric fashion, 

“pushing” the target one direction and the response the opposite direction to facilitate 

convergence. But if these multipliers are incorrectly updated, the multipliers will “push” 

the targets and responses past convergence. Upon the next update of the multipliers, their 

values will reverse causing them to be “pushed” back past each other. In these cases, a 

divergent oscillation occurs between the target and response preventing convergence.  

An Example of Convergence Using Different Solution Strategies  

The two bar truss problem shown in Figure 2.3 was solved to demonstrate the 

method and shows the differences between the loop strategies. This system is optimized 

for minimum weight under the specified load subject to an upper bound constraint on the 

axial stress in each bar as well as side constraints on the design variables defined by 

vector 𝑧.  
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Figure 2.3 Two bar truss free body diagram 

 

The deterministic all-at-once (AAO) formulation of the optimization problem is 

expressed as (Rao 1996) 

 min
𝒛

 𝑓 = 𝜌 (𝑧1 √𝑧3
2 + 36 + 𝑧2 √𝑧3

2 + 1)  

 s.t.   𝑔1 =
𝑃 √𝑧3

2+36

7 𝜎0 𝑧3 𝑧1
− 1 ≤ 0  

  (2.5) 

 𝑔2 =
6 𝑃 √𝑧3

2+1

7 𝜎0 𝑧3 𝑧2
− 1 ≤ 0 

  0 ≤ 𝑧1 ≤ 0.1 ;   0 ≤ 𝑧2 ≤ 0.1;  1 ≤ 𝑧3 ≤ 6 

where design variables 𝑧1 and 𝑧2 are the areas of bars 1 and 2, respectively, 𝑧3 is the truss 

height, with specific weight 𝜌 = 76,500 N m3⁄ , applied force 𝑃 = 1,000 N and 

allowable axial stress 𝜎0 = 105 Pa. The optimum point reported in literature is 

[𝑧1
∗, 𝑧2

∗, 𝑧3
∗]  =  [  0.003779 m2, 0.0092579 m2, 2.45 m] where 𝑓∗ = 3747.7 N and both 

constraints are active.  
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This problem is decomposed into two elements in a two-level hierarchy as shown 

in Figure 2.4. Each element optimizes one of the bars in the truss while 𝑧3 is shared 

between the two elements.  

 

Figure 2.4 Hierarchical decomposition of the two bar truss problem 

 

The problem was first solved using the single loop formulation with initial 

weights equal to 1, with 𝛽 = 1.1, and 𝜏 = 0.0001. Several iterations of the solution are 

shown in Table 2.1 below. It should be noted that 𝑡22 and 𝑟22 represent the target and 

response values for design variable 𝑧3 The initial values are denoted as iteration 0. The 

values of the objective function are given with the penalty function included. 
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Table 2.1 Convergence of single loop optimization 

Iteration 𝒕𝟐𝟐   (𝒎) 𝒓𝟐𝟐   (𝒎)   𝒛𝟏  (𝒎𝟐) 𝒛𝟐   (𝒎𝟐) 𝒇   (𝑵) 𝒄𝟐𝟐 𝒂𝟐𝟐 
0 1.00 1.00 0.10000 0.10000 57,351.87 0.000000 1 
1 4.94 1.04 0.00225 0.01189 2,745.81 3.904456 1 
2 2.96 1.29 0.00323 0.01084 3,510.12 1.669229 1 
3 2.19 1.73 0.00416 0.00990 4,111.16 0.460620 1.1 
4 2.16 2.05 0.00422 0.00954 4,018.08 0.110384 1.21 
5 2.27 2.23 0.00404 0.00939 3,884.79 0.039446 1.21 
6 2.34 2.33 0.00393 0.00933 3,813.98 0.015068 1.33 
7 2.39 2.38 0.00387 0.00930 3,781.30 0.006563 1.46 
8 2.41 2.41 0.00383 0.00928 3,765.56 0.003102 1.61 
9 2.42 2.42 0.00381 0.00927 3,757.61 0.001552 1.77 
10 2.43 2.43 0.00380 0.00927 3,753.41 0.000812 1.95 
… … … … … … … … 
25 2.4492 2.4492 0.00378 0.00926 3,747.75 1.46 E -6 7.40 

 

Since the initial design point is conservative, there is a large drop in the objective 

function from the iteration 0 to 1, followed by a rise until iteration 3. This is followed by 

the slow, consistent fall. This is because by the program finds a non-converged minimum 

for that set of targets, responses, weights and multipliers. In the next iteration those 

values have updated, causing the previous solution to be suboptimal, and the algorithm 

solves again with better convergence. As can be observed below, the difference between 

iteration 10 and iteration 25 is fairly small, but takes the majority of the computational 

costs and iterations. In total, this solution took 3.06 seconds and 1,778 function calls. 

To show the difference between the single and double loop strategies, the solution 

was re-run using double loop strategy once again using initial weights of 1, with 𝛽 = 1.1, 

and 𝜏 = 0.0001. Several iterations of that solution are shown in Table 2.2. These results 

show a much more gradual convergence. The inner loop converged after iteration 4 

passing the information to the outer loop to update the multipliers. In this case, the 
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criteria were not met to update the multipliers. The next inner loop convergence occurred 

after iteration 13. The algorithm moves very little after each update of the weights and 

multipliers, but this causes a less jumpy solution than the single loop approach. Since 

there is some level of convergence before the weights and multipliers are updated, the 

criteria to update the weights are met less often resulting in a solution with lower final 

weights. In total this solution took 5.31 seconds and 3,559 function calls, an increase of 

73 % and 100 % over the single loop formulation, respectively. This shows that the single 

loop formulation is more computationally efficient than the double loop formulation for 

this simple problem. 

Table 2.2 Convergence of double loop optimization 

Iteration 𝒕𝟐𝟐   (𝒎) 𝒓𝟐𝟐   (𝒎) 𝒛𝟏  (𝒎𝟐) 𝒛𝟐  (𝒎𝟐) 𝒇   (𝑵) 𝒄𝟐𝟐 𝒂𝟐𝟐 
0 1.00 1.00 0.10000 0.1000 57,351.87 0.000000 1 
1 4.94 1.04 0.00225 0.0119 2,745.81 3.904456 1 
2 4.96 1.04 0.00224 0.0119 2,744.65 3.921422 1 
3 4.96 1.04 0.00224 0.0119 2,744.63 3.921729 1 
4 4.96 1.04 0.00224 0.0119 2,744.63 3.921735 1 
5 2.95 1.30 0.00324 0.0108 3,516.27 1.657884 1 
6 3.09 1.34 0.00312 0.0107 3,471.72 1.748844 1 
7 3.11 1.35 0.00310 0.0107 3,465.36 1.764016 1 
8 3.13 1.35 0.00315 0.0107 3,495.97 1.772641 1 
9 3.12 1.35 0.00301 0.0107 3,463.55 1.768471 1 
10 3.12 1.35 0.00301 0.0107 3,463.87 1.767674 1 
… … … … … … … … 
66 2.44948 2.44947 0.00378 0.009258 3,747.73 7.39 E -6 1.21 
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CHAPTER III 

OPTIMIZATION UNDER UNCERTAINTY 

Reliability Based Design Optimization 

Engineering products are not manufactured in a deterministic fashion, nor are 

engineering materials properly quantified by deterministic specifications. Despite this, 

most engineering optimizations are deterministic and treat the part dimensions and 

material specifications as deterministic. This leads to products that may be over-designed 

with uncharacterized uncertainty, as in the case of A-basis or B-basis values, or have a 

higher than desired failure rate if mean values are used. In either of these cases, the 

uncertainty in the system is not considered during the design optimization process.  

Uncertainty quantification is needed in the design of products to ensure that parts 

fit together, components do not fail excessively, and the product works properly. 

Reliability-Based Design Optimization (RBDO) brings uncertainty quantification into the 

design optimization process. A standard all-at-once, deterministic optimization problem 

is formulated as 

 𝑚𝑖𝑛
𝒙

    𝑓(𝒙)  

 s.t.  𝒈(𝒙) ≤ 0   
  (3.1) 
        𝒉(𝒙) = 0 

where  𝒙𝑙 ≤ 𝒙 ≤ 𝒙𝑢 
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where 𝒙 is the vector of design variables, 𝑓(𝑥) is the objective function to be optimized, 

𝒈 is the vector of all inequality constraints, 𝒉 is the vector of all equality constraints, and 

𝒙𝑙 and 𝒙𝑢 are the vectors of the upper and lower bounds for 𝒙.  

RBDO changes the deterministic design constraints into probability of failure, 𝑃𝑓, 

or reliability, 𝑅 = 1 − 𝑃𝑓, constraint formulations depending on whether the focus is on 

the failure or the safe region of the design space. Expressing the constraints in terms of 

failure probability changes the formulation of eq. (3.1) to  (DorMohammadi & Rais-

Rohani 2012) 

 𝑚𝑖𝑛
𝝁𝑿,𝐲 

    𝑓(𝝁𝑿, 𝒚, 𝝁𝑷 )  

 s.t.  𝑃(𝒈(𝑿, 𝒚, 𝑷) > 0) − 𝑃𝑎 ≤ 0  
  (3.2) 
 𝒉(𝝁𝑿, 𝒚, 𝝁𝑷) = 0            

  𝝁𝒙
𝑙 ≤ 𝝁𝒙 ≤ 𝝁𝒙

𝑢 ;  𝒚𝑙 ≤ 𝒚 ≤ 𝒚𝑢      

where 𝝁𝑿 is the vector of means of uncertain variables in vector 𝑿, 𝐲 is the vector of 

deterministic variables, 𝝁𝑷 is vector the means for uncertain parameters in vector 𝑷, 

𝑃(𝐴) is the probability of event 𝐴, and 𝑃𝑎 is the allowable probability of failure. The term 

𝒈(𝑿, 𝒚, 𝑷) represents the limit state function with 𝒈(𝑿, 𝒚, 𝑷) < 0 representing safety and 

𝒈(𝑿, 𝒚, 𝑷) > 0 failure. The allowable probability of failure may be fairly high for low 

quality products with few safety concerns, but for high reliability products, this 

probability must be kept low. High reliability products cost more, but they are used in 

applications where the consequences of the product’s failure are significant (airplanes, 

embedded medical devices, etc.). Since statistical analyses are being used, uncertain 
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variables and parameters are no longer represented by a single value but by multiple 

discrete values (incomplete information) or a distribution (complete information). 

Traditional RBDO utilizes classical probability theory to quantify the uncertainty 

by representing uncertain variables by known probability distributions. While classical 

probability theory can be used to quantify aleatory uncertainty (random or inherent 

variability), it cannot accurately model epistemic uncertainty, which stems from lack of 

knowledge of the system, its underlying physics, or operating conditions. With epistemic 

uncertainty, there is not enough information to form a probability distribution; hence, it is 

more generally represented in interval form. A further discussion of epistemic uncertainty 

is found in Chapter 4. 

One hindrance to the use of RBDO is the added costs associated with uncertainty 

analysis. To properly quantify the uncertainty, simulation based techniques or 

probabilistic analyses must be performed. As more sources of uncertainty are combined, 

these simulations and analyses become more costly. Most formulations assume that all 

distributions are normal or can be reduced to an equivalent normal that can be 

characterized by a mean and a standard deviation. This assumption simplifies the 

problem and reduces the cost of the analyses but they are still quite expensive (Rouhi and 

Rais-Rohani 2013, DorMohammadi and Rais-Rohani 2012).    

Non-Deterministic Design Optimization Techniques for Epistemic Uncertainty 

Uncertainty quantification techniques have been used for modeling epistemic 

uncertainty based on monotone measures (Choquet 1953), fuzzy set theory (Zadeh 1965), 

evidence theory (Demster 1968, Shafer 1976), Bayesian theory (Winkler 1972, Berger 

1985), possibility theory (Dubois and Prade 1988), and information-gap theory (Ben-
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Hiam 2001). Some of these techniques have been integrated with the RBDO concept to 

create non-deterministic design optimization techniques capable of quantifying epistemic 

uncertainty. These include possibility based design optimization (PBDO) (Nikolaidis et 

al. 2004), evidence based design optimization (EBDO) (Agarwal et al. 2004, Mourelatos 

and Zhou 2006), and Bayesian reliability based design optimization (BRBDO) (Youn et 

al. 2006). 

This study focuses on evidence theory, as its ability to quantify interval-based 

uncertainty without the use of simplifying assumptions makes it desirable for engineering 

optimization (Klir and Smith 2001). Others have integrated evidence theory into design 

optimization (Agarwal et al 2004, Bae et al. 2004, 2006, Mourelatos and Zhou 2006, 

Salehghaffari and Rais-Rohani 2012), but to the author’s knowledge none has done so in 

a multilevel framework. An overview of evidence theory is presented in the next chapter. 
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CHAPTER IV 

EPISTEMIC UNCERTAINTY AND EVIDENCE THEORY 

Epistemic uncertainty is generally represented by intervals with each interval 

having an upper and lower bounds based on expert opinions or scientific experiments. 

These intervals, taken together, form a belief structure or frame of discernment for the 

uncertain parameter. Each interval is defined by an upper bound, a lower bound, and an 

expression of trust or belief defined by basic probability assignment (BPA), denoted as 

𝑚(𝐴) for interval 𝐴. The BPA is assigned by the statistician based on the level of trust in 

the interval, its source, or its support. An interval where 𝑚(𝐴) > 0 is called a focal 

element. The belief structure for a given variable can take several forms: disjoint, nested, 

or general as depicted by the simple examples in Figure 4.1.  
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Figure 4.1 Examples of belief structure forms 

(a) Disjoint 
(b) Nested 
(c) General 

Evidence theory (ET), also called Dempster-Shafer theory of evidential reasoning, 

uses two measures of likelihood, belief and plausibility defined respectively as 

 𝐵𝑒𝑙(𝐵) = ∑ 𝑚(𝐴)𝐴⊆𝐵        (4.1) 

 𝑃𝑙(𝐵) = ∑ 𝑚(𝐴)𝐴∩𝐵≠∅      ∀ 𝐵 ⊆ 𝑋. (4.2) 

These measures bound the true probability, 𝑝(𝐵), where 𝐵𝑒𝑙(𝐵) ≤ 𝑝(𝐵) ≤

𝑃𝑙(𝐵). The difference between plausibility and belief is the epistemic uncertainty 

(Demster 1968, Shafer 1976). The smaller the gap is between belief and plausibility, the 

smaller the epistemic uncertainty. For the example belief structure shown in Figure 4.2, 

𝐵𝑒𝑙(3.5 ≤ 𝑥 ≤ 7.5) = 0.5 and 𝑃𝑙(3.5 ≤ 𝑥 ≤ 7.5) = 0.9, because the bounds 3.5 ≤ 𝑥 ≤

7.5 completely contain focal elements 3 and 4 while the bounds contain part of focal 

elements 2 and 5. The epistemic uncertainty for the interval then is 0.9 − 0.5 = 0.4. It 
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should be noted that these values for belief and plausibility are valid for all lower bound 

values between 3 and 4 and all upper bound values between 6 and 7. This property means 

that the belief and plausibility are stepwise functions. This property holds true for all 

belief and plausibility functions over the entire domain.  

 

Figure 4.2 A general belief structure  

 

When evidence theory is used to define the belief and plausibility of a function 

that depends on multiple uncertain variables, the individual belief structures are 

combined to find the resulting joint belief structure. The number of focal elements in the 

joint belief structure is found by multiplying (i.e. Cartesian products) the number of focal 

elements in each contributing belief structure. Hence, each focal element of the joint 

belief structure takes the form of a hyperspace with the interval bounds being the upper 

and lower bounds of the contributing focal elements in the original belief structures. If 

𝑥, 𝑦, 𝑧 represent three uncertain variables with I, J, and K as the number of focal 

elements, respectively, their joint belief structure can be expressed mathematically as 
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 𝜉 = 𝑋 × 𝑌 × 𝑍 = {(𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘)|𝑥𝑖 ∈ 𝑋, 𝑦𝑗 ∈ 𝑌, 𝑧𝑘 ∈ 𝑍 }; (4.3) 

  𝑚[(𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘)] =  𝑚[𝑥𝑖] × 𝑚[𝑦𝑗] × 𝑚[𝑧𝑘] (4.4) 

 𝑖 = 1, … , 𝐼;   𝑗 = 1, … , 𝐽;   𝑘 = 1, … , 𝐾 

where 𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘 represent the ith, jth, kth focal elements of 𝑥, 𝑦, 𝑧, respectively; 𝑚[𝑥𝑖] , 

𝑚[𝑦𝑗] , and 𝑚[𝑧𝑘] being the BPA of focal element 𝑖, 𝑗, and 𝑘 in the belief structure for 

variable 𝑥, 𝑦, and 𝑧, respectively. 

The two disjoint belief structures in Figure 4.3 result in the joint belief structure in 

Figure 4.4. An arbitrary inequality constraint in the form 𝑔(𝑥1, 𝑥2) = 𝑥2 − 0.5 𝑥12 +

10 𝑥1 − 52 ≤ 0 is chosen, where the curve in Figure 4.4 represents the limit state, i.e., 

𝑔(𝑥1, 𝑥2) = 0. The belief that the constraint is satisfied is found by adding the BPAs of 

joint focal elements 11, 12, 13, and 21 or 𝐵𝑒𝑙(𝑔 ≤ 0) = 0.23. The plausibility that the 

constraint is satisfied is 𝑃𝑙(𝑔 ≤ 0) = 0.55 with all the above elements plus elements 22, 

23, and 31 contributing. Conversely, the likelihoods of constraint violation are 

𝐵𝑒𝑙(𝑔 > 0) = 0.45 and 𝑃𝑙(𝑔 > 0) = 0.77. This shows that the joint belief structure 

operates in the same way as any other belief structure.  
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Figure 4.3 Contributing belief structures for the joint belief structure in Figure 4.4 

(a) Belief structure for x1 
(b) Belief structure for x2 

 

Figure 4.4 Joint belief structure of x1 and x2 with constraint boundary shown 
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Although the uncertainty bounds for the contributing variables in each joint focal 

element are known, the upper and lower bounds of the corresponding response function 

are unknown and need to be calculated as part of the uncertainty propagation step. The 

upper and lower values of the response function in each focal element are used to 

describe the corresponding belief structure. For a given set of uncertain variables, there is 

only one joint belief structure, but the belief and plausibility of different response 

functions evaluated using that joint belief structure can be drastically different. 

Calculating the upper and lower bounds of response functions within each joint 

focal element is an optimization problem, which can quickly lead to an escalation in 

computational costs. If the function is continuous and differentiable, a gradient-based 

optimizer can be used to solve the plausibility sub-optimization problem; otherwise, a 

gradient-free optimizer must be used. The application of evidence theory to design 

optimization was explored by Mourelatos and Zhou (2006) and others (Agarwal et al. 

2004, Salehghaffari and Rais-Rohani 2012) in what is known as evidence-based design 

optimization (EBDO). EBDO exploits the property that 𝐵𝑒𝑙(𝐵) + 𝑃𝑙(¬𝐵) = 1 to define 

the belief of a safe design as 𝐵𝑒𝑙(𝐵) = 1 − 𝑃𝑙(¬𝐵) where 𝑃𝑙(¬𝐵) is the plausibility of 

failure. The inequality constraints in the deterministic optimization problem (i.e., 𝑔𝑖 ≤ 0) 

are then converted to failure plausibility constraints (i.e., 𝑃𝑙(𝑔𝑖 ≥ 0) − 𝑃𝑎 ≤ 0) in 

EBDO, where 𝑃𝑎 is the maximum allowable failure probability set by the designer. Thus, 

the final design under uncertainty is guaranteed to have a higher reliability than the 

minimum allowable as 𝑝(𝑔𝑖 ≥ 0) ≤ 𝑃𝑙(𝑔𝑖 ≥ 0) ≤ 𝑃𝑎.  

In this study, the plausibility and belief of failure for a given constraint are found 

by optimizing the constraint function and the negative of that function while setting side 
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constraints to the bounds of each joint focal element. This finds the maximum and 

minimum values of the function in that focal element’s hyperspace. If either the 

maximum or the minimum value violates the constraint, that constraint’s BPA contributes 

to the plausibility of failure. The calculation of failure belief is not needed in this case as 

the constraint is only on the plausibility, but belief would be calculated by adding the 

BPA of all focal elements in which both the maximum and minimum values violated the 

constraint. 



www.manaraa.com

 

31 

CHAPTER V 

EVIDENCE-BASED MULTILEVEL DESIGN OPTIMIZATION 

The integration of the multilevel optimization framework and uncertainty 

quantification using evidence theory changes the formulation of the non-deterministic 

design constraints in each element as well as the manner by which uncertain quantities 

(i.e., variable or response) are transferred from one element to another in the target-

response process of ATC. 

When uncertainties are considered, they are introduced in two forms, uncertain 

parameter vector 𝑷 and uncertain design variable vector 𝒚. Here, both uncertain 

parameters and uncertain variables are represented by a multi-interval belief structure 

such as that introduced previously in Chapter IV. In this study, each uncertain design 

variable is viewed as a point estimate, 𝑥𝑖, of the uncertain variable 𝒚𝑖 through an 

algebraic function. This point estimate relationship allows the optimizer to manipulate an 

entire belief structure of an uncertain variable by changing its point estimate. For this 

study, the functional relationship is defined as either  𝒚𝑖 = 𝑥𝑖 + 𝑷𝑖 or 𝒚𝑖 = 𝑥𝑖 𝑷𝑖.  

A standard optimization problem in element 𝑖𝑗 has the deterministic formulation 
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 𝑚𝑖𝑛
�̅�𝑖𝑗 

    𝑓(�̅�𝑖𝑗  ) + 𝜋(𝒄𝑖𝑗)  

 s.t.  𝒈𝑖𝑗 ≤ 0 (5.1) 

        𝒉𝑖𝑗 = 0 

where �̅�𝑖𝑗 = [𝒙𝑖𝑗 , 𝒓𝑖𝑗 , 𝒕𝑖𝑗 , 𝒕(𝑖+1)𝑘1
, … , 𝒕(𝑖+1)𝑘𝐷𝑖𝑗

] and  𝒙𝑖𝑗
𝑙 ≤ 𝒙𝑖𝑗 ≤ 𝒙𝑖𝑗

𝑢  

with 𝒙𝑖𝑗
𝑙  and 𝒙𝑖𝑗

𝑢  representing the lower and upper bounds of the design variables, 

respectively.  

In evidence-based multilevel design optimization (EBMLDO), the deterministic 

inequality constraints in Eq. (5.1) are converted into non-deterministic inequality 

constraints on the plausibility of failure, similar to EBDO. A belief structure, like a 

probability distribution, cannot be properly expressed in an equality constraint. 

Therefore, equality constraints are evaluated using a single value, the point estimate of 

the uncertain variables. The side constraints on uncertain design variables must be 

modified to account for the uncertainty and are enforced on the point estimate of the 

variable. The EBDO formulation of the element 𝑖𝑗 optimization problem takes the form  

 𝑚𝑖𝑛
�̅�𝑖𝑗

    𝑓(�̅�𝑖𝑗 , 𝑷) + 𝜋(𝒄𝑖𝑗)  

  s.t.   𝑃𝑙(𝒈𝑖𝑗 ≥ 0) − 𝑃𝑎 ≤ 0 
  (5.2) 
 𝒉𝑖𝑗 = 0 

 �̅�𝑖
𝑙 ≤ 𝑥𝑖 ≤ �̅�𝑖

𝑢  

where �̅�𝑖
𝑙 and �̅�𝑖

𝑢 are the modified lower and upper side constraints, respectively, and 𝑃𝑎 

is the maximum allowable failure probability (Mourelatos and Zhou 2006). For 

uncertainties of the form 𝒚𝑖 = 𝑥𝑖 + 𝑷𝑖, the modified bounds would be �̅�𝑖
𝑙 = 𝑥𝑖

𝑙 −
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min(𝑷𝑖) and �̅�𝑖
𝑢 = 𝑥𝑖

𝑢 − max(𝑷𝑖).  For uncertainties of the form, 𝒚𝑖 = 𝑥𝑖 𝑷𝑖, the bounds 

would be modified to �̅�𝑖
𝑙 = 𝑥𝑖

𝑙 min (𝑷𝑖)⁄  and �̅�𝑖
𝑢 = 𝑥𝑖

𝑢 max(𝑷𝑖)⁄ . The resulting modified 

upper and lower bounds have a smaller range than the original upper and lower bounds. 

This formulation of the constraints allows consideration of epistemic uncertainty within 

each decomposed element. 

In EBMLDO, targets and responses are no longer a single value. They are either 

uncertain themselves, or based on uncertain information. Therefore, the target-response 

process of ATC must be modified so that sufficient information is passed between the 

connecting elements in the hierarchy to ensure the entire system does not exceed its 

maximum allowable failure probability, 𝑃𝑎, while optimizing the system in a decomposed 

manner. When the information shared between two elements is an uncertain design 

variable, only the point estimate of the uncertain variable, 𝑥𝑖, needs to be coordinated. 

For this study, 𝑥𝑖 is defined both as a point estimate for an uncertain variable and as a 

deterministic variable. This is intentional as the goal of the decomposition of the 

uncertain variable into the point estimate and uncertain parameter is to allow a way for 

the optimization to treat uncertain variables in the same way that deterministic variables 

are treated. The same belief structure is referenced by the constraints in all elements. 

Thus, when the coordinated point estimates are equal, the coordinated uncertain variables 

will be exactly equal, with the same number of focal elements and associated upper and 

lower bounds. 

When the shared information is a response quantity that depends on two or more 

uncertain variables and/or parameters, the target-response coordination process becomes 

more complicated. First, a joint belief structure is created for each response function in 
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the element 𝑖𝑗 using Eqs. (4.3) and (4.4), then the upper and lower bounds of the 

uncertain function are calculated in each joint focal element to obtain the corresponding 

response belief structure. While the BPA value for each joint focal element does not 

change the upper and lower bounds of the response function in each joint focal element 

can change. The calculation of the response bounds in each joint focal element and their 

matching with the corresponding target belief structure requires a large amount of 

computer memory, increasing the computational costs and finding an exact match 

between multi-level elements nearly impossible. This method proposes the use of a single 

characteristic number (CN) that is passed between the elements for a given target-

response coordination. There are many ways of defining a CN, those explored here are 

the constraint bound, off-constraint bound and weighted mean values of the uncertain 

function.  

Before proceeding, several terms need to be defined. The best way to do this is to 

detail the steps of the target-response process with uncertainty as shown in Figure 5.1.  

For a given element in the multilevel hierarchy, there is a vector of design variables, 𝑥𝑖, 

and perhaps one or more uncertain parameters, 𝑷𝑖. Uncertain design variables are 

decomposed into point estimates and uncertain parameters. The belief structures of the 

uncertain variables and parameters are combined into a joint belief structure. Functions 

such as targets, responses, or constraints that depend on uncertain variables or parameters 

are calculated from the joint belief structure and the deterministic variables. The 

evaluation of these functions produces an interval for every focal element in the joint 

belief structure. For simplicity, this set of intervals will be referred to as the function’s 

belief structure. The function belief structures are shown vertically to distinguish them 
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from the input belief structures of the uncertain variables and uncertain parameters. Each 

function produces a separate output belief structure for the same input joint belief 

structure and design variables. For simplicity, the Figures 5.1, 5.2, and 5.3 show the total 

range of the function’s belief structure rather than the individual focal elements within 

that structure.  

 

Figure 5.1 Diagram of the flow of information for EBMLDO 

 

The thought experiment in the following chapters assumes that the target, 

response, and constraint functions are monotonic and that the gradients of all constraints 
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with respect to a given target or response have the same sign over the whole design 

space. This assumption means that the constraint values are linked to the target and 

response values. Thus, the constraint violation can be correlated to a target or response 

value for a given set of variables.  

Consider the case where no failure is allowable, 𝑃𝑎 = 0, and the target and 

response belief structures have differing ranges as shown in Figure 5.2.  In this figure, the 

range of the uncertain target is shown in grey on the left for each set. Only the single 

number, represented by the solid circle, is passed between multilevel elements. The range 

of the response is shown next to the target. The additional range of the response is shown 

in red if it is below the line of constraint violation when the response is coordinated with 

the target and green if it produces a margin from failure. The constraint bound CN, 

shown in Figure 5.2 (a), matches the values closest to the constraint violation. In this 

case, there is a zero likelihood of constraint violation, but there is a chance for an overly 

conservative answer as shown by the green bar which extends farther away from the 

constraint violation than the target value. The off constraint bound CN, shown in Figure 

5.2 (b), aligns the bound of the belief structures farthest from constraint violation. This 

method allows constraint violation in the response as the additional range of the response 

must violate the constraint. The weighted mean CN, shown in Figure 5.2 (c), aligns the 

function’s weighted mean calculated as 𝑊𝑀 = ∑   
𝑓𝑖

𝑙+𝑓𝑖
𝑢

2

𝑛𝑓𝑒
𝑖=1 𝑚(𝑖) where  𝑓𝑖

𝑙 and 𝑓𝑖
𝑢 are 

the lower and upper bounds of focal element 𝑖 of the target or response function 𝑓 and 

𝑛𝑓𝑒 is the number of focal elements in 𝑓.  This CN leads to a balance of violation and 

conservatism as long as the contributing response is balanced (the weighted mean is the 

average of the belief structure’s absolute upper and lower bounds) and all equations that 
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the structure is used in are linear, otherwise it quickly strays to overly conservative or 

violation of constraint. Thus, the only method which ensures that the 𝑃𝑎 = 0 constraint is 

met when the response is coordinated to the target is the constraint bound CN in Figure 

5.2 (a). 

 

Figure 5.2 Target-response coordination for characteristic numbers with 𝑃𝑎 = 0 

a) Constraint bound characteristic number 
b) Off-Constraint bound characteristic number 
c) Weighted mean value characteristic number 

When 𝑃𝑎 > 0, there are slight differences in the application of the CN. Each 

element designs to the globally defined allowable probability of failure which allows a 

certain degree of failure. In Figure 5.3, the portions of the response shown in blue 

represent the allowable plausibility of failure. While these portions of the response 

violate constraints, they are less than 𝑃𝑎 and, therefore, allowable. To ensure that 𝑃𝑎 is 

met as closely as possible without violation, the passed value should be the value closest 

to constraint violation, which does not violate constraint as shown in Figure 5.3 (b). 

However, finding this value is computationally expensive as each focal element has to be 
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analyzed for compliance. Finding the constraint bound value, as shown in Figure 5.3 (a), 

is much easier as it only requires analysis of the bounds without analyzing compliance. 

This may lead to less than optimal solutions compared to the constraint value, but should 

not violate the constraints.  

 

Figure 5.3 Target-response coordination for characteristic numbers with 𝑃𝑎 > 0 

a) Constraint bound characteristic number 
b) Constraint value characteristic number 

The three-beam, two-rod problem proposed by Allison et al. (2005) was used to 

determine the validity of each CN. The free body diagram of the problem is shown in 

Figure 5.4. It consists of three beams connected by two rods with all members having a 

circular cross section. The beam diameters, 𝑑𝑗 for 𝑗 = 1 … 3, and rod diameters, 𝑑𝑟 𝑘 for 

𝑘 = 1 … 2, are design variables, and all are considered uncertain for this exercise. The 

uncertainty is multiplicative in the form 𝒚𝑖 = 𝑥𝑖  𝑷𝑖 with the initial uncertainty of ±1%. 

The exact belief structure used for this exercise is unimportant, because to achieve 𝑃𝑎 = 0 

the entire range of the variable has to satisfy the constraints; thus, only the upper and 
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lower bounds, +1% and -1% respectively, are needed. Constraints for the system are the 

maximum normal stress ≤ 127 MPa for each member, beam 1 maximum vertical 

deflection, 𝑓1 ≤ 27𝑚𝑚, and a maximum force transferred to the support of each beam, 

𝐹𝑡 𝑗  ≤ 400 𝑁. The problem is divided into three elements as proposed by Tosserams et 

al. (2006). Element 1 optimizes beam 1 and rod 1, element 2 optimizes beam 2 and rod 2, 

and element 3 optimizes beam 3. The transferred pieces of information are the deflection 

of the beam, 𝑓𝑖, and the force passed to the structure above, 𝐹𝑖, which represent uncertain 

responses, but are functions of the uncertain variables. The targets from element 1 are 

calculated using the uncertain beam 1 and rod 1 diameters. The responses from element 2 

are calculated using the uncertain beam 2 diameter. Similarly, the targets from element 2 

are calculated from the uncertain beam 2 and rod 2 diameters. The responses from 

element 3 are calculated from the uncertain diameter of beam 3.  

 

Figure 5.4 Structure used to validate characteristic numbers’ target-response process 

a) Structure with applied loading 
b) Forces, moments, and deflections on each rod and beam 
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In this analysis, the constraints were used to solve for a viable solution with 𝑃𝑎 =

0 then 𝑃𝑎 = 0.1 to test both the 𝑃𝑎 = 0 and 𝑃𝑎 > 0 cases. This analysis is not intended to 

find the optimal design, merely a valid design point on the constraint boundary to judge 

the validity of each CN. The plausibility of failure was then tested using a simple finite 

element matrix with six nodes to ensure that the solution’s plausibility of failure was, in 

fact, zero. This allowed the design points produced by using the different CNs to be 

tested for validity and compared to the correct solution.  

The 𝑃𝑎 = 0 cases were tested first. The analysis showed that the weighted mean 

CN caused constraint violation. The constraint and off-constraint bound CNs both 

produced valid results with the off-constraint bound weights being slightly higher when 

symmetric belief structure is used, but when asymmetric belief structures (+1/-2% and 

+2/-1%) were used, the constraint bound CN provided a better solution and better 

correlation to the actual values of the transferred information. The off-constraint bound 

CN yielded feasible but less than optimal results because, in this case, the target range 

was greater than the response range. As expected, the constraint bound CN produced 

more optimal results.    

The analysis was repeated for 𝑃𝑎 = 0.1 using the constraint bound CN only as it is 

both computationally inexpensive and guarantees that 𝑃𝑙 < 𝑃𝑎. For this analysis, all 

uncertain variables use the same base belief structure shown in Figure 5.5 (a) for the 

initial analysis. This resulted in a plausibility of failure, 𝑃𝑙 = 0.0032. Obviously, this is 

much less than the allowable plausibility of 0.1. This is due to the conservative nature of 

the constraint bound CN. To show this, the analysis was performed again using the belief 

structures where the most active focal element, the one closest to failure, was spaced 
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away from the other focal elements. For these belief structures, the weighted mean 

remained the same. These belief structures are shown in Figure 5.5 (b) and (c). For these 

belief structures, the plausibilities of failure were 𝑃𝑙 = 0.04 and 𝑃𝑙 = 0.09, respectively. 

This trend toward the allowable probability of failure is due to the lower interference 

from the other focal elements. It should be noted that the belief structure used in the final 

analysis is very near the range of uncertainty above which there is no feasible solution for 

this problem. This final analysis shows that this method will not violate constraint. The 

constraint bound value CN provides the lowest computational time while still ensuring no 

constraint violation. 
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Figure 5.5 Belief structures used to test characteristic numbers for 𝑃𝑎 > 0 

(a) Belief structure with -1 / +1 % bounds 
(b) Belief structure with -2 / +1 % bounds 
(c) Belief structure with -3 / +1 % bounds 

One of the disadvantages of the EBDO formulation is that it introduces 

complications in the optimization process. Due to the piecewise constant nature of 

plausibility, the gradient of the constraints is undefined over the entire domain regardless 

of the constraint. Thus, a zeroth order optimization method is needed. For this work, a 

genetic algorithm (GA) was chosen, though any such optimizer should work. A 

preliminary investigation showed that the decomposed multilevel process is only 
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convergent if legacy information is included in the initial GA population for the each 

inner loop. Thus, the previous best solution is inserted as one member of the larger initial 

population with the other members being random. This means that most of the time the 

previous best solution from the initial population is the previous best solution, but 

sometimes one of the random members is better. This allows a thorough examination of 

the design space while not restarting the optimization process in each iteration.  

The use of a zeroth-order optimizer requires a change in the convergence criteria. 

While ‖𝑐𝑖𝑗
𝑛 − 𝑐𝑖𝑗

𝑛−1‖ < 𝜏 is satisfactory for gradient-based optimizers, with GA, this same 

condition could merely mean that the best solution from the last iteration is the best of the 

initial population and the new members introduced as a result of crossover and mutation 

operations are also inferior to the previous best solution. This can lead to premature 

convergence or a vastly uncoordinated result. Therefore, this work proposes the use of 

three convergence criteria: ‖𝑐𝑖𝑗
𝑛 − 𝑐𝑖𝑗

𝑛−1‖ < 𝜏, 𝑓𝑛 − 𝑓𝑛−1 < 𝜏/10, and 𝑐𝑖𝑗
𝑛 < 𝜏, where 𝑓𝑛 

is the solution to the current iteration. The criterion 𝑓𝑛 − 𝑓𝑛−1 < 𝜏/10 is primarily used 

in double loop ATC configurations as the inner loop convergence criterion (Tosserams et 

al. 2006) and  𝑐𝑖𝑗
𝑛 < 𝜏 is added to ensure a coordinated final solution. 
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CHAPTER VI 

MULTILEVEL OPTIMIZATION WITH UNCERTAINTY 

Formulation of Example Problems 

The evidence-based multilevel design optimization (EBMLDO) framework 

presented in Chapter V was applied to two example problems to demonstrate the 

framework’s application and performance. These problems were selected because they 

meet all criteria for decomposition and have low computational costs. The low costs are 

important because the addition of uncertainty to an optimization framework increases the 

computational costs significantly. All optimizations were performed using MATLAB®.  

For determination of the upper and lower bounds of a response function in each 

joint focal element (for the plausibility of failure calculation), the gradient-based 

optimizer fmincon was used with the interior-point algorithm and the gradients 

determined using the forward finite difference method. Each element of the multilevel 

hierarchy was optimized using GA with an initial population of 30, a uniform creation 

function, a scattered crossover function with 0.8 crossover fraction, and two elite 

members passed to the next generation.  

Problem 1  

Problem 1 is the nondeterministic version of the two bar truss problem presented 

in Chapter 2. All three design variables, shown in Figure 2.3, are considered uncertain 
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using the same belief structure shown in Figure 6.1, which is multiplied by the point 

estimates expressed as 𝒚𝑖 = 𝑧𝑖 𝑷𝑖, where the belief structure, 𝑷𝑖, varies from 0.95 to 

1.05. The belief structure used simulates tolerances of ±5% on the bars’ areas and the 

truss height. This belief structure is symmetric about 𝑦 = 1, so the point estimates are the 

weighted mean values. 

 

Figure 6.1 Belief structure used for Problem 1 

 

The uncertainty quantification is implemented on the inequality constraint in each 

element. This implementation seeks to reduce the mean weight of the system rather than 

the uncertainty in the system as other formulations of EBDO (Bae et al 2004). The 

hierarchical decomposition of the problem with uncertainty is shown in Figure 6.2. This 

decomposition varies from the decomposition shown in Figure 2.4 in the formulation of 

the constraints; this one having nondeterministic constraints. 
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Figure 6.2 Hierarchical decomposition of Problem 1 in Chapter 2 with uncertainty 

 

To gain a more thorough understanding of the effects of double-loop versus 

single-loop implementation of ATC and the effect EPF factors, this optimization problem 

was solved more than 300 times changing the loop form, the various EPF parameters 

(𝛽, 𝑎0, and 𝑏0), and the initial design point. A summary of these results is given below. 

From both the single and double loop results, it was found that the initial design 

point must be feasible (all plausibility constraints must be satisfied). It was also observed 

that better results were achieved when the initial weights and multipliers are balanced 

(𝑎0 = 𝑏0 and 𝜇0 = 𝛾0) and either the initial weights, 𝑎0 and 𝑏0, or the updating factor, 𝛽, 

are closer to the upper bound while the other is closer to the lower bound of their 

recommended ranges. The recommended values of 𝛽 are between 1 and 2. The initial 

multipliers, 𝜇0 and 𝛾0, are scaled as needed so that the penalty portion of the function can 

properly influence the overall objective function. The recommended values for initial 

weights, 𝑎0 and 𝑏0, are between 1 and 5.  So for 𝑎0 = 𝑏0 = 3, a lower updating 

parameter of 𝛽 = 1.2 is recommended.  
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The double-loop implementation of the problem took 58% longer per run 

(averaging 253 CPU minutes)1 versus the single-loop average of 160 CPU minutes for 

𝑃𝑎 = 0.2. The double-loop strategy, however, was less likely to converge to a local 

minimum and was much less sensitive to changes in initial parameters, making it much 

more likely to find the global optimum with any given run.  

The best solutions to the non-deterministic version of Problem 1 are summarized 

in Table 6.1 and compared with the deterministic optimum solutions using two different 

optimization methods (i.e., SQP and GA). The EBMLDO problem was optimized for 𝑃𝑎 

values of 0.2, 0.05, and 0.01. These results show that the designs that use evidence theory 

(ET) converge to larger system weights, as expected, but the optimum values would be 

hard to predict without this analysis. For instance, the truss height decreased for 𝑃𝑎  values 

of 0.20 and 0.05, but the truss height for 𝑃𝑎 = 0.01 was greater than the deterministic 

solution’s height. There is also fair agreement between the AAO and the EPF solutions. 

However, in all the non-deterministic cases, the EPF+ET solutions are better than the 

AAO+ET solutions. This is believed to be mainly due to the fact that more runs were 

completed with EPF+ET, and the small, allowable difference between target and 

response allowing a marginal improvement. The inherent randomness of GA means that 

the larger the number of runs, the more likely one is to find a better optimum. As a result 

of adding uncertainty, both EBDO and EBMLDO require higher computational cost and 

time for finding the solution. This increase in costs has been observed with any 

optimization under uncertainty technique. The deterministic optimum converged with 

                                                 
1 Microsoft Windows XP SP2; Processor Intel® Pentium® D CPU 3.00 GHz, 

1.00 GB RAM 
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1,380 computations in 2 seconds using EPF and SQP. In contrast, it took the 𝑃𝑎 = 0.2 

EBDO solution 13 million computations in 3,837 seconds (64 minutes) to converge and 

the comparable EBMLDO solution over 47 million total optimization computations in 

14,836 seconds (247 minutes). This represents a huge cost for implementing ET. The 

increase in time and computations between the EPF and AAO formulations reflects the 

simplicity of the original problem. The original problem is only slightly more complex 

than each element of the decomposed problem. Decomposed optimization only shows 

advantages when the original problem is much more complex than the decomposed 

elements.  

Table 6.1 Summary of results of Problem 1. 

Approach 𝑷𝒂 𝒛𝟑: 𝒕𝟐𝟐 𝒛𝟑: 
𝒓𝟐𝟐 𝒛𝟏 𝒛𝟐 𝒇∗ 𝒄𝟐𝟐 GAcost Time (s) 

Deterministic Solutions 
EPF+SQP - 2.4495 2.4495 0.003780 0.009258 3,747.7 0.000472 -         3 
EPF+GA - 2.2910 2.2908 0.004006 0.009347 3,755.8 0.000263 76,814        36 

Non-Deterministic Solutions 
AAO+ET 0.20 2.5745 - 0.003798 0.009456 3,895.1 - 3,150   3,837 
EPF+ET 0.20 2.4061 2.4056 0.004024 0.009546 3,892.5 0.000529 23,460 14,836 
AAO+ET 0.05 2.5829 - 0.003880 0.009712 3,996.8 - 3,150   3,848 
EPF+ET 0.05 2.3745 2.3739 0.004168 0.009806 3,990.5 0.000595 31,740 20,642 
AAO+ET 0.01 2.4273 - 0.004115 0.009801 4,005.7 - 3,150   3,835 
EPF+ET 0.01 2.5212 2.5211 0.003967 0.009762 4,000.9 0.000098 12,420   7,597 

 

Comparing the optimum objective function of the all-at-once, EBDO, solutions to 

the decomposed results, EBMLDO, reveals very similar values for the objective function 

but dissimilar values for system height. This is achieved by differing values of the bar 

cross sectional areas. In the deterministic formulation of this problem the comparison of 

the objective function and the system height is defined by a fourth order polynomial with 

a single minimum. The solution with uncertainty included is also defined by a fourth 
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order polynomial but with two global minima. While the AAO and decomposed solutions 

differ in each case this is merely because each is finding a different global minima. While 

each solution converged to each minima, the best solution for each method was a 

different global minima (due to the relatively loose tolerance and randomness of genetic 

algorithm).  

Problem 2 

Problem 2 is a nonlinear, seven-variable, optimization problem formulated as 

 𝑚𝑖𝑛
𝑥𝑖

𝑓 = 𝑥1
2 + 𝑥2

2  

  s.t.   𝑔1 = 𝑥3
−2 + 𝑥4

2 − 𝑥5
2 ≤ 0 

 𝑔2 = 𝑥5
2 + 𝑥6

−2 − 𝑥7
2 ≤ 0 

  (6.1) 
 ℎ1 = 𝑥3

2 + 𝑥4
−2 + 𝑥5

2 − 𝑥1
2 = 0 

 ℎ2 = 𝑥5
2 + 𝑥6

2 + 𝑥7
2 − 𝑥2

2 = 0 

 𝑥1 , 𝑥2, … , 𝑥7 ≥ 0 

where at the deterministic point of optimum 𝒙∗  =  [2.149, 2.076, 1.316, 0.760,

1.075, 1.000, 1.463], 𝑓∗ = 8.93 and all constraints are active. The problem is 

decomposed into the two-element hierarchy proposed by Tosserams (2004) as shown in 

Figure 6.3 for the EPF formulation.  
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Figure 6.3 Hierarchical decomposition of Problem 2 

 

The variables 𝑥3, 𝑥5, and 𝑥7 are considered uncertain. All three uncertain 

variables use the same belief structure shown in Figure 6.4. The uncertainty is added to 

the point estimate of each variable with the absolute upper and lower bounds expressed as 

𝒚𝑖 = 𝑥𝑖 ± 0.5. Because the belief structure is symmetric around zero, the point estimate 

is the same as the weighted mean. Only the point estimate value of the shared variable, 

𝑥5, is passed between the two elements. The uncertainty is only considered in the 

inequality constraints and the point estimates are used to determine compliance with the 

equality constraints. The side constraints are modified to account for uncertainty, and 

enforced on the point estimate. 
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Figure 6.4 Belief structure used for problem 2 

 

To simplify the problem and find the effect of the equality constraints, the 

equality constraints were used to express 𝑥1 and 𝑥2 as functions of the other variables. 

These were substituted into the original problem to produce a five variable, non-linear 

optimization problem: 

 𝑚𝑖𝑛
𝑦,𝑧1,𝑧2

𝑓 = [ 𝑥3
2 + 𝑥4

−2 + 𝑥5
2 ] 2 + [ 𝑥5

2 + 𝑥6
2 + 𝑥7

2 ] 2  

  s.t.    𝑔1 = 𝑥3
−2 + 𝑥4

2 − 𝑥5
2 ≤ 0 

  (6.2) 
 𝑔2 = 𝑥5

2 + 𝑥6
−2 − 𝑥7

2 ≤ 0 

 𝑥3 , 𝑥2, … , 𝑥7 ≥ 0 

The original numbering scheme is retained for ease of recognition, but 𝑥1 and 𝑥2 

have been eliminated.  

Only the double-loop strategy was used for this problem. The results are 

presented in Table 6.2. These solutions all used 𝑃𝑎 = 0.2. The increase in computational 

time is once again observed to be very high, but the costs are nearly 5 times less for the 

case with no equality constraints. This is probably due to the randomness inside of GA 
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whose generated points are unlikely to satisfy the equality constraint. Therefore, it is 

recommended that equality constraints be eliminated, if possible.  

Table 6.2 Summary of results from problem 2. 

Solution 𝒙𝟓: 𝒕𝟐𝟐 𝒙𝟓: 𝒓𝟐𝟐 𝒇∗ 𝒄𝟐𝟐 𝒂𝟎 = 𝒃𝟎 GAcost Time (s) 
EPF+GAa 1.0745 1.0745   8.928 1.35E-7 - 9,740 5 

EPF+ET full 1.3760 1.3350 13.248 0.04096 5 234,384 164,324 
EPF+ET no equality 1.2497 1.2561 12.615 0.06450 5 55,200 33,933 

 a Deterministic optimum solution.  

On the Effect of Belief Structure 

Once it was shown that the EBMLDO approach was able to solve an optimization 

problem under epistemic uncertainty, it was used to solve the two bar truss problem from 

above with various belief structures. The goal of this study was to determine exactly how 

the belief structure affects the final solution in hopes of being able to replace expensive 

belief structures (those with large numbers of focal elements) with less expensive belief 

structures. Each focal element eliminated would result in a reduction in the time needed 

to calculate the plausibility of failure. Since this calculation is performed many times 

throughout the optimization, this can result in a significant time savings. The belief 

structures tested are shown in Figure 6.5. 
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Figure 6.5 Belief structures tested to determine their effect 

a) Original Belief Structure in Problem 1  b) Symmetric, Nested Belief Structure 
c) Right Skewed, Nested Belief Structure d) Left skewed, Nested Belief Structure 
e) Symmetric, Disjoint Belief Structure 1 f) Right skewed, Disjoint Belief Structure 1 
g) Left Skewed, Disjoint Belief Structure 1 
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Nested and disjoint belief structures were each tested with a right skewed, a left 

skewed, and a symmetric belief structure. All the belief structures used three focal 

elements and tried to mimic the original belief structure from Problem 1 as closely as 

possible while still meeting its designated criteria. For all these optimizations a maximum 

allowable probability of 𝑃𝑎 = 0.2 was used. 

The optimum solutions are shown in Table 6.3. For these results, the right skewed 

belief structure produced a higher objective function than the symmetric belief structure, 

while the left skew produced an objective function lower than the symmetric result. This 

does not match the expected results. For a right skewed belief structure, the “outliers” are 

located on the higher (right) side of the belief structure. Since the failure side is the lower 

(left) side, one would expect the right skewed result to be lower. This is believed to be 

due to the construction of the belief structure in that the weighted mean of the skewed 

belief structures is not 1. Looking just at the symmetric case, the results of the nested 

belief structure are significantly higher than those for the original belief structure, and the 

results of the disjoint belief structures are significantly lower than the other two. This was 

unexpected as each new belief structure was designed to be as similar to the original as 

possible. Note the dissimilarity in different measures of computational cost between the 

original belief structure’s results and the nested symmetric belief structure’s results. 

While the time and the total number of optimization function calls used to calculate the 

plausibility of failure (defined in Tables 6.3, 6.4, 6.5 and 6.6 as CompCost) remain nearly 

the same, the total number of times that the genetic algorithm evaluated the objective 

function and constraints (defined in Tables 6.3, 6.4, 6.5 and 6.6 as GAcost) increases 
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significantly. This is because different weights and updating factors are used, decreasing 

the convergence speed of EPF. 

Table 6.3 Raw optimum solutions for various belief structures 

 

When creating the right and left skewed belief structures, one of the focal 

elements was chosen to retain its upper and lower bounds. This means that, in order to 

obtain a right or left skew, the upper and lower bounds of the other two focal elements 

were moved. This resulted in belief structures where the weighted mean was not the point 

estimate for that belief structure. To gain a better understanding of these results, they 

were adjusted so that the weighted mean is the point estimate these results are shown in 

Table 6.4. 

These results show the expected pattern between the symmetric, right skewed, 

and left skewed belief structures. This shows that it was the construction of the belief 

structures that caused the unexpected shifts above. The disjoint belief structures with 

𝑚(2) = 0.6 result in an increase in the optimum objective function almost up to the 

Belief 
Structure 𝒛𝟑: 𝒕𝟐𝟐 𝒛𝟏 𝒛𝟐 𝒇∗ 𝒄𝟐𝟐 GAcost CompCost Time (s) 

Original Belief Structure (Figure 6.5 a) 
Original 2.4061 0.004024 0.009546 3,892.5 0.000530 23,460 47,844,254 14,836 

Nested Belief Structures  (Figure 6.5 b, c, & d) 
Symmetric 2.5027 0.003977 0.009557 3,950.8 0.003571 59,340 42,139,486 13,106 
Right Skew 2.2524 0.004407 0.009838 4,015.4 0.000098 64,500 45,341,579 14,277 
Left Skew 2.1844 0.004370 0.009571 3,894.4 0.000798 98,040 69,245,164 20,708 

Disjoint Belief Structures  𝑚(2) = 0.8  (Figure 6.5 e, f, & g) 
Symmetric 2.3444 0.003962 0.009431 3,791.4 0.000069 64,500 44,495,915 13,337 
Right Skew 2.2427 0.004119 0.009480 3,796.0 0.004599 49,020 34,286,286 10,514 
Left Skew 2.4199 0.003855 0.009348 3,779.8 0.000956 56,760 39,251,007 12,345 

Disjoint Belief Structures  𝑚(2) = 0.6  (Same form as  Figure 6.5 e, f, & g ) 
Symmetric 2.4098 0.004028 0.009407 3,868.6 0.001795 103,200 72,504,341 23,139 
Right Skew 2.5313 0.003896 0.009345 3,886.4 0.000763 180,600 126,443,030 43,956 
Left Skew 2.5131 0.003849 0.009332 3,848.0 0.002951 126,420 88,018,548 28,423 
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original optimum. This increase was expected as increasing the BPA of focal elements on 

the failure side of the belief structure should result in a more conservative answer. Each 

group from these results is much more clustered than those above. This means there is 

greater similarity between those in each group when the weighted mean is used as the 

point estimate. The reason for this is explained below. 

Table 6.4 Solutions with weighted mean as point estimate for various belief structures 

 

Replicating Results with Different Belief Structures 

From the results collected above, it appears that the most important feature of the 

belief structure is the cumulative plausibility function (CPF) from the failure side. The 

cumulative plausibility for any given point in the belief structure is the sum of all the 

BPAs of the focal elements to one side of that point including the BPA of any focal 

element the point lies in. There is a much sharper rise in the CPF among the nested belief 

structure than the original, and the disjoint CPF with 𝑚(2) = 0.8 is missing the second 

Belief 
Structure 𝒛𝟑: 𝒕𝟐𝟐 𝒛𝟏 𝒛𝟐 𝒇∗ 𝒄𝟐𝟐 GAcost CompCost Time (s) 

Original Belief Structure  
Original 2.4061 0.004024 0.009546 3,892.5 0.000530 23,460 47,844,254 14,836 

Nested Belief Structures 
Symmetric 2.5027 0.003977 0.009557 3,950.8 0.003571 59,340 42,139,486 13,106 
Right Skew 2.2258 0.004355 0.009722 3,946.9 0.000097 64,500 45,341,579 14,277 
Left Skew 2.2102 0.004422 0.009684 3,960.8 0.000807 98,040 69,245,164 20,708 

Disjoint Belief Structures  𝑚(2) = 0.8 
Symmetric 2.3444 0.003962 0.009431 3,791.4 0.000069 64,500 44,495,915 13,337 
Right Skew 2.2383 0.004111 0.009461 3,785.0 0.004581 49,020 34,286,286 10,514 
Left Skew 2.4247 0.003863 0.009397 3,791.1 0.000958 56,760 39,251,007 12,345 

Disjoint Belief Structures  𝑚(2) = 0.6 
Symmetric 2.4098 0.004028 0.009407 3,868.6 0.001795 103,200 72,504,341 23,139 
Right Skew 2.5204 0.003880 0.009308 3,862.9 0.000760 180,600 126,443,030 43,956 
Left Skew 2.5231 0.003864 0.009369 3,871.2 0.002963 126,420 88,018,548 28,423 
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rise that is present in the original CPF as shown in Figure 6.6. This is believed to be 

driving the nested results to be higher than the original and the disjoint results lower.  

 

Figure 6.6 Comparison of the cumulative plausibility functions for tested belief 
structures 

 

Because the cumulative plausibility just measures plausibility and not belief, one 

can create an infinite number of belief structures with the same CPF. It is important to 

note that this works only when the side of the belief structure that contributes to failure is 

known. In Problem 1 above, the failure side is known for the rod cross sectional areas (𝑧1 

and 𝑧2), as a smaller area gives a higher stress and is closer to failure. Unfortunately the 

side that contributes to failure is not always clear. For instance variable 𝑥5 from problem 

2 may cause failure by either increasing or decreasing. In the case of “black box” 

analyses, the effect of a variable may be unknown. 
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To test if the CPF was the only factor affecting the optimum solution, a new, 

nested belief structure, shown in Figure 6.7, with five focal elements was created to 

replace the belief structure used for the rods’ cross sectional areas (𝑧1 and 𝑧2)  in Problem 

1. Each focal element of this belief structure has the same lower bound as the 

corresponding focal element in the original belief structure, and all the focal elements in 

this belief structure have the same upper bound, 1.05, which is the same upper bound as 

the original belief structure. The new belief structure was applied only to the rods’ cross 

sectional areas. The original belief structure was applied to the truss height. The results of 

this optimum are compared to the original results in Table 6.5. 

 

Figure 6.7 The belief structure with the same cumulative plausibility structure from 
the left side as the original belief structure from problem 1.  

 

Table 6.5 Results from belief structures with same Cumulative Plausibility Structure  

Belief 
Structure 

𝒛𝟑: 𝒕𝟐𝟐 𝒛𝟏 𝒛𝟐 𝒇∗ 𝒄𝟐𝟐 GAcost CompCost Time (s) 

Original 2.4061 0.004024 0.009546 3,892.5 0.0005296 23,460 47,844,254 14,836 
New 2.4200 0.004003 0.009533 3,892.2 0.0020922 67,080 132,723,699 39,762 
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These results are nearly identical to the original results. This shows that the CPF 

drives the optimum point rather than the exact belief structure. Because of this, it is 

concluded that the weighted mean point estimate results from the last section matched 

each other better because their CPFs were more similar than those that did not use 

weighted mean point estimate. While there is a large difference in computational cost 

between these results, this is believed to be due to the weights and updating parameter 

used in the EPF formulation because of the very similar GAcost/Time. In fact if an 

average is taken over the 50 runs with each belief structure, the original belief structure 

took 1.608 GAcost s⁄   while the new belief structure took 1.604 GAcost s⁄ . If the belief 

structure were the cause of the computational cost increase, one would expect a 

significant decrease in this statistic. 

Decreasing Costs through Manipulation of Belief Structures 

The next goal of this research was to reduce the computational costs while 

maintaining the same results by manipulating the belief structure. These attempts will 

focus on two variables to improve the efficiency of the system: the range of each focal 

element, and the number of focal elements. Because calculation of the plausibility of 

failure requires optimization operations to find the maximum and minimum value of the 

evaluated function in each focal element, it seems reasonable that reducing the 

uncertainty space would increase the speed and reduce the number of function calls 

required to solve the plausibility. The reduction in the number of focal elements reduces 

the number of optimization operations that need to be performed. The problem with 

reducing the number of focal elements is that it degrades the quality of the plausibility 

calculation. Thus, the eliminated focal elements need to be the ones of the least influence 
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over the final answer. This is achieved by eliminating the focal elements farthest from the 

failure side, once again assuming that the failure side of the optimization is known.  

As shown in the section above, the same results can be achieved with a different 

belief structure as long as the CPF from the failure side remains the same. This can be 

achieved by moving the bound of a focal element that is away from the failure side. Since 

the goal is to reduce the range of each focal element, the range is set to the arbitrary small 

value of 0.001 as shown in Figure 6.8. Next the two focal elements farthest away from 

the failure side, focal elements 4 and 5, are eliminated and their BPAs are added to focal 

element 3, the closest remaining focal element to them as shown in Figure 6.8.  

 

Figure 6.8 Belief structure which reduces costs while giving the same optimal point 

 

The results in Table 6.6 show that the same optimum objective function value is 

achieved with the truncated belief structure as with the original belief structure. Hence, 

this truncated belief structure is functionally the same as the original belief structure, but 

can lead to less computational costs. While the number of optimization operations and the 

total time of the optimization are reduced, a greater measure of the efficiency of this 

belief structure is the large increase in the number of main optimization function 

evaluations (GAcost) per second, and the significant reduction in the number of constraint 

optimization function calls required to evaluate the constraints of the main function 
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(CompCost / GAcost). The improvement in these cost metrics is significant, because the 

cost reduction is even greater than that observed with the other belief structures with 

three focal elements tested above. These belief structures had about 4.6 GAcost s⁄   and 

about 680 CompCost GAcost⁄ , for an average increase of 22% in GAcost/s and 20% 

decrease in CompCost/GAcost. The observed increased efficiency suggests that the 

additional savings are due to the reduction in the focal elements’ range, which allows the 

implementation of a cost reduction measure without eliminating focal elements. The focal 

element range can be reduced if the constraint is monotonic and the failure side is known 

regardless of the problem or which subset of the focal elements contributes to plausibility 

of a constraint failure. 

Table 6.6 Results of belief structure in Figure 6.8 showing reduced cost metrics 

 

These reveal how the belief structure can affect the optimization solution, but they 

also display an effective method for the integration of multilevel optimization and 

uncertainty quantification using evidence theory.  

Belief 
Structure 𝒛𝟑: 𝒕𝟐𝟐 𝒛𝟏 𝒛𝟐 𝒇∗ 𝒄𝟐𝟐 

Original 2.4061 0.004024 0.009546 3,892.5 0.0005296 
Same CPS 2.4200 0.004003 0.009533 3,892.2 0.0020922 

Reduced Cost 2.4524 0.003958 0.009522 3,892.0 0.0002896 
Belief 

Structure 𝐆𝐀𝐜𝐨𝐬𝐭 
𝐆𝐀𝐜𝐨𝐬𝐭 

𝐬
 𝐂𝐨𝐦𝐩𝐂𝐨𝐬𝐭 

𝐂𝐨𝐦𝐩𝐂𝐨𝐬𝐭

𝐆𝐀𝐜𝐨𝐬𝐭
  Time (s) 

Original 23,460 1.581 47,844,254 2,039.4 14,836 
Same CPS 67,080 1.687 132,723,699 1,978.6 39,762 

Reduced Cost 49,020 5.634 26,316,983 536.9 8,701 
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CHAPTER VII 

MULTILEVEL OPTIMIZATION OF A TRANSPORT AIRCRAFT WING  

The multilevel optimization framework is suitable for complex engineering 

systems that can be decomposed into smaller analysis and optimization sub-problems. 

The design problem considered in this chapter focuses on the material-product 

optimization of a transport aircraft wing (TAW) without consideration of the underlying 

uncertainties. The original problem considered the shape and sizing optimization of the 

wing for an aircraft similar to a Boeing 767 (Garcelon et al. 1999, Venter and Sobieski 

2004, 2006). The TAW model is assumed to have sandwich composite skin panels with 

honeycomb core and fiber-reinforced polymer composite face sheets. In addition to the 

continuous reinforcing fibers, the vinyl ester matrix is enhanced using carbon nanofibers. 

In a recent study, DorMohammadi and Rais-Rohani (2014) developed a multilevel 

framework for the coupled material-product systems and demonstrated its application on 

the design of a rectangular composite sandwich plate with nano-reinforcements. Here, the 

wing structure will be optimized from the nano-reinforcements in the enhanced matrix 

and the sandwich wing panels to the wing’s overall structure while holding the shape and 

applied loads fixed. While vinyl ester is not a preferred matrix material for an aircraft’s 

primary structure, it is used here to maintain consistency with past research. 

The use of advanced composites in aircraft structures leads to a large number of 

design variables to optimize under multiple failure modes. The design variables typically 
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include the thickness and angle of each ply along with core thickness, honeycomb cell 

size, and foil thickness. Within the face sheet material, the elastic properties and volume 

fraction of the continuous fibers and the carbon nanofibers control the stiffness of each 

ply. All of these variables combined lead to a large design optimization problem. 

All wings have stiffness requirements, which are often introduced in an 

optimization problem as constraints on wing tip deflection, twist angle, and/or vibration 

frequencies. The use of sandwich design introduces failure modes such as shear crimping, 

face sheet dimpling, and face sheet wrinkling (Bruhn 1973). The wing structure with 

sandwich panels must be able to withstand all these failure modes while resisting fatigue 

and damage under normal operating conditions. All these failure modes require analyses 

that are sometimes quite computationally expensive. By isolating these analyses in 

several simpler problems the computational costs can be reduced, as discussed later in 

this chapter. 

The TAW problem is decomposed into a three level hierarchy: the wing problem 

at the top level optimizes the wing’s total weight subject to excessive deflections, the 

sandwich panel problem in the middle level optimizes the weight of the panel subject to 

failures of the skin, and the nano-enhanced matrix problem at the bottom level optimizes 

the polymer matrix for the face sheet laminate. As shown in Figures 7.1 and 7.2, the wing 

structural optimization is the system level problem. This wing is divided into two panel 

groups. Each group is optimized using its own multilevel optimization with two levels. In 

the original sandwich plate formulation (DorMohammadi and Rais-Rohani 2014), the 

sandwich plate was decomposed into three levels, but a two level formulation is used 

here to allow the use of first ply failure criterion which is expected to be a dominant 
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mode for the lower wing skin that operates mostly under tension. The macro-level 

structural/material problem optimizes each sandwich panel’s composite laminate. The 

micro-level material problem optimizes the properties of the matrix through the use of 

carbon nanofibers. Each of these problems is more thoroughly explained in the following 

sections.  

 

Figure 7.1 The multiple levels optimized in the transport aircraft wing problem.  

Figure is modified from DorMohammadi and Rais-Rohani (2014). Wing photo 
reproduced with the permission of Air Canada. 



www.manaraa.com

 

65 

 

Figure 7.2 The decomposed framework showing the three levels of the transport 
aircraft wing problem, the corresponding inputs, and the variables 

 

For this formulation, the wing was divided into two panel groups and two spar/rib 

groups. The panels and the rib/spar groups were divided at rib number 5 into separate 

inboard and outboard groups. Therefore the general hierarchy from Figure 7.2 becomes 

the problem specific hierarchy in Figure 7.3. For clarity, Elements 22 and 23 in Figure 

7.3 correspond to Element 2 in Figure 7.2. Similarly, Elements 34 and 35 in Figure 7.3 

correspond to Element 3 in Figure 7.2. 

Both the upper and lower wing skins in each group are identical. Each wing skin 

panel group has 21 design variables and the wing has 4 design variables for a total of 46 

design variables. For the decomposed formulation, 12 decision variables must be added, 
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eight in Element 11 to act as the targets for Elements 22 and 23 and two each in Elements 

22 and 23 to act as the targets for Elements 34 and 35.  

 

Figure 7.3 Two panel group decomposition of the Transport Aircraft Wing Problem 

The critical panels are outlined in red and orange dashed lines for panel groups 1 and 2, 
respectively.  



www.manaraa.com

 

67 

Element 11: System-Level Structural Model and Design 

The top level problem (Element 11) optimizes the wing members’ dimensions and 

the skin stiffness to minimize the wing’s weight. For this problem, the spars and ribs are 

assumed to be only webs connecting the wing skins. There are constraints on the 

maximum compressive and tensile stresses in the spars and the ribs and on the maximum 

tip deflection and maximum tip twist. In the original problem, all the members are made 

of 6061 aluminum alloy with the wing skins being a sandwich of aluminum face sheets 

and Divinycell F40 foam core. In this formulation, the spars and ribs remain 6061 

aluminum, but the skins are replaced with a carbon fiber sandwich composite with 2024 

aluminum honeycomb as the core material. Although not directly modeled here, it is 

assumed that there is a proper barrier in the contact surfaces between the aluminum and 

carbon components to avoid galvanic corrosion. This skin material is the same as that 

used in the sandwich plate optimization problem (DorMohammadi and Rais-Rohani 

2014); further details appear in the Level 2 description below. The combination of 

aluminum substructure with carbon fiber outer structure has been used in industry before. 

The Airbus A400M military transport and the Bombardier CS100, CS300, and CS500 

commercial airliners feature carbon fiber reinforced skins and spars with aluminum ribs. 

The example here is different in using aluminum for the spars as well as the ribs.  

The finite element (FE) model used for the top-level optimization problem is 

shown in Figure 7.4. Analyzed using MSC Nastran 2013.1 Student Edition, the model 

uses 72 membrane elements to model the three spar webs, eight rib webs and two skins. 

The root rib is not modeled and each node that would have been on that rib is held fixed 

against translation and rotation along all axes resulting in a clamped boundary condition. 
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Only the wing box is modeled using CQUAD4 elements, 2D quadrilateral membrane 

elements, denoted in Figure 7.4 by the light blue cross members bounded by the thick 

blue lines which outline each element. Loads are transferred from the leading and trailing 

edges of the wing by “rigid” RBE3 elements denoted by the red lines in Figure 7.4. Each 

skin panel is supported by two spars and two ribs giving a total of 32 skin panels.  

Any number of these panels could be optimized using the full multilevel model or 

they could be grouped in any configuration to reduce the number of computations. For 

each group of panels, the variables are the total skin face sheet thickness and the elastic 

moduli of the skin’s facesheet material (𝐸𝑥𝑥, 𝐸𝑦𝑦, and 𝐺𝑥𝑦), which is assumed to be 

transversely isotropic (𝐸𝑧𝑧 = 𝐸𝑦𝑦, 𝐺𝑥𝑧 = 𝐺𝑦𝑧 = 𝐺𝑥𝑦). The core thickness for each group 

is defined as a design variable in the middle level. The eight ribs divide the wing into an 

equal number of sections with all the spars in each section having equal thicknesses. Each 

rib is also assumed to have a uniform thickness.  

 

Figure 7.4 The finite element model of the wing  
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The loading on the wing is meant to represent a 3.75 𝑔 pull-up maneuver, the 

FAA requirement for a transport wing’s ultimate load (Federal Aviation Regulations Part 

25). The maximum gross takeoff weight of the aircraft is assumed to be 300,000 lb. 

More information about the specifications of the aircraft and the wing is provided in 

Table 7.1. The forces applied to the wing are distributed in both the chordwise and 

spanwise directions to simulate the aerodynamic forces. For this simulation, forces 

associated with engine thrust and weight as well as structural and fuel weights are not 

considered. The chordwise distribution of the aerodynamic loads is shown in Figure 7.5. 

The horizontal force applied to the leading edge node simulates the drag force and is 

applied to the leading edge only. The spanwise distribution is shown in Figure 7.6. To 

find the force on any given node, the wing section load (31,887.76 lb) is multiplied by 

the corresponding spanwise and chordwise coefficients. For example, the nodal force 

applied to the node at the rear spar on rib 5 is 𝐹5,4 = 31,887.76 lb ∗ 0.7 ∗ 0.5 =

11,160.72 lb where the subscripts 5 and 4 represent the rib number and chord position, 

respectively.    

 

Figure 7.5 Normalized chordwise lift distribution  
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Figure 7.6 Normalized spanwise lift distribution 

 

Table 7.1 Transport Aircraft and Wing Specifications 

Property Symbol Value Units 
Gross Takeoff Weight GTOW 300,000 lb 
Ultimate Load Factor of Safety  FSU     3.75 
Wing Area Sw    2,100 ft2 
Wing Span bw  120 ft 
Root Chord cr   25 ft 
Rib Spacing lpanel     7.5 ft 
Leading Edge Sweep ΛLE   25.6 degrees 
Aspect Ratio AR     6.86 
Taper Ratio λ     0.4 
Airfoil Thickness Ratio t c⁄      0.15 

 

The optimization algorithm defines the face sheet properties. To apply them to the 

NASTRAN CQUAD elements in a meaningful way, a MAT8 material card is used to 

define a new custom material with the selected moduli. This user defined material is then 

applied to each skin element using the PCOMP property card. The top face sheet layer 

thickness is one-half of the total face sheet thickness, 𝑡𝑓𝑠; the core thickness is defined by 

Level 2 and merely inserted in the middle layer of the PCOMP, and the bottom face sheet 

has the same thickness as the top and uses the same user defined material. The core 

material is assumed to have moduli of 𝐸𝑐 = 1.3 𝑘𝑠𝑖 and 𝐺𝑐 = 1.2 𝑘𝑠𝑖 with an assumed 
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effective density of 𝜌𝑐 = 5 𝑙𝑏 𝑓𝑡3⁄  in this level. The moduli are approximately the same 

as those for Divinycell F40 and the effective density is approximately that of aluminum 

honeycombs, similar to the one designed at Level 2. These approximations are valid 

because the core related failure modes are calculated in Level 2 and the core properties 

are so much smaller than the face sheet properties that their influence on this level is 

negligible. This approximation also does not affect the weight calculations in a way that 

would change the optimization, because the assumed effective core density is 

approximately the same as the actual density and is much less than the material density of 

either aluminum or carbon fiber composites.  

The optimization problem in Element 11 at the top level is expressed as 

 min
𝑡𝑓𝑠,𝑡𝑠,𝑡𝑟,𝐸𝑥𝑥,𝐸𝑦𝑦,𝐺𝑥𝑦

  ∑ [𝜌𝑐𝑓 (𝐴𝑝𝑖
𝑛𝑝𝑎𝑛𝑒𝑙

𝑖=1
 𝑡𝑓𝑠𝑖

) + 𝜌𝑐  (𝐴𝑝𝑖 ℎ𝑐𝑖
)]  

 +𝜌𝐴𝑙  ∑ (𝐴𝑠𝑗  𝑡𝑠𝑗 +𝑚
𝑗=1 𝐴𝑟𝑗  𝑡𝑟𝑗) + 𝜋𝐸𝑃𝐹 

 𝑠. 𝑡.   𝑔1 = 𝛿𝑡𝑖𝑝 − 16 𝑓𝑡 ≤ 0 

 𝑔2 = 𝜃𝑡𝑖𝑝 − 3 𝑑𝑒𝑔 ≤ 0  

 𝑔3 = 50 𝑘𝑠𝑖 − 𝜎𝐶𝑜𝑚𝑝𝑀𝑎𝑥 ≤ 0 (7.1) 

 𝑔4 = 𝜎𝑇𝑒𝑛𝑀𝑎𝑥 − 25 𝑘𝑠𝑖 ≤ 0 

 0.2 𝑖𝑛 ≤ 𝑡𝑓𝑠 ≤ 4 𝑖𝑛 ;  0.4 𝑖𝑛 ≤ 𝑡𝑠 ≤ 5 𝑖𝑛 ;  0.2 𝑖𝑛 ≤ 𝑡𝑟 ≤ 4 𝑖𝑛 ;  

 2,057 𝑘𝑠𝑖 ≤ 𝐸𝑥𝑥 ≤ 20,739 𝑘𝑠𝑖 ;   2,057 𝑘𝑠𝑖 ≤ 𝐸𝑦𝑦 ≤ 20,739 𝑘𝑠𝑖 ;  

 822 𝑘𝑠𝑖 ≤ 𝐺𝑥𝑦 ≤ 5,465 𝑘𝑠𝑖 

where 𝑛𝑝𝑎𝑛𝑒𝑙 is the number of skin panel groups, 𝑚 is the number of spar and rib groups, 

𝜌𝑐𝑓 = 124.4 𝑙𝑏 𝑓𝑡3⁄  is the density of the carbon fiber composite, 𝜌𝑐 is the assumed 
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effective density of the core, and 𝜌𝐴𝑙 = 168.6 𝑙𝑏 𝑓𝑡3⁄  is the density of 6061 aluminum 

alloy. The thicknesses of the face sheets, cores, spars, and ribs are denoted by 𝑡𝑓𝑠, ℎ𝑐, 𝑡𝑠, 

and 𝑡𝑟, respectively. The core thickness is defined by Level 2 and the other thicknesses 

are variables. The areas used to calculate the mass of the wing are the area of the panels, 

𝐴𝑝, the area of the spar webs, 𝐴𝑠, and the area of the rib webs, 𝐴𝑟. Constraints are 

enforced on the maximum tip deflection, 𝛿𝑡𝑖𝑝, maximum tip twist angle, 𝜃𝑡𝑖𝑝, and the 

maximum compressive and tensile stresses, 𝜎𝐶𝑜𝑚𝑝𝑀𝑎𝑥 and 𝜎𝑇𝑒𝑛𝑀𝑎𝑥, respectively. The 

material properties of the aluminum used in this problem along with the maximum and 

minimum properties of the carbon fiber used in the face sheets are shown in Table 7.2 

below. The subscripts for the material properties below refer to a laminate based 

coordinate system where the 1 direction refers to the in plane direction along the short 

dimension of the panel, 2 refers to the in plane direction along the long dimension of the 

panel, and 3 refers to the out of plane direction. 
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Table 7.2 Material Properties for Wing Components 

Ply material minimum properties (𝑽𝑪𝑭 = 𝟎. 𝟐𝟓 , 𝑽𝑪𝑵𝑭 = 𝟎. 𝟎) 
Property Symbol Value Units 
Longitudinal Elastic Modulus E1 16,697.47 ksi 
Transverse Elastic Modulus E2    675.09 ksi 
Shear Modulus G12    270.77 ksi 
Poisson’s Ratio ν12 0.26 

 
Ply material maximum properties (𝑽𝑪𝑭 = 𝟎. 𝟕𝟓 , 𝑽𝑪𝑵𝑭 = 𝟎. 𝟑) 
Property Symbol Value Units 
Longitudinal Elastic Modulus E1 49,524.11 ksi 
Transverse Elastic Modulus E2 8,305.64 ksi 
Shear Modulus G12 3,194.48 ksi 
Poisson’s Ratio ν12 0.300 
6061 Aluminum Alloy (Spar and Rib Material) 
Property Symbol Value Units 
Density ρAl     168.60 lb ft3⁄  
Elastic Modulus EAl  10,000 ksi 
Shear Modulus GAl  3,770 ksi 
Poisson’s Ratio νAl  0.33 
Tensile Strength σTcr

  50 ksi 
Compressive Strength σCcr

  25 ksi 

 

The exponential penalty function formulation in the augmented Lagrangian in Eq. 

(7.1) is expressed as 

 𝜋𝐸𝑃𝐹 = ∑ {
𝜇2 𝑖

𝑎2 𝑖
(𝑒𝑎2 𝑖 (𝒕2 𝑖−𝒓2 𝑖) − 1) +

𝛾2 𝑖

𝑏2 𝑖
(𝑒𝑏2 𝑖 (𝒓2 𝑖−𝒕2 𝑖) − 1)}

𝑛𝑝𝑎𝑛𝑒𝑙 + 1

𝑖=2
 (7.2) 

where    𝒕2 𝑖 = [𝐸𝑥𝑥, 𝐸𝑦𝑦, 𝐺𝑥𝑦, 𝑡𝑙];   𝒓2 𝑖 = [𝐸𝑥𝑥
𝑅 , 𝐸𝑦𝑦

𝑅 , 𝐺𝑥𝑦
𝑅 , 𝑡𝑙𝑅];   �̅�11 = [𝑡𝑠, 𝑡𝑟]; 

the superscript 𝑅 denotes responses from Elements 22 and 23, and  𝑡𝑙 denotes the total 

laminate thickness 𝑡𝑙 = 2 𝑡𝑓𝑠 + ℎ𝑐. It should be noted that the membrane forces are held 

constant at this level; they are an output of the NASTRAN analysis and are needed in 



www.manaraa.com

 

74 

Elements 22 and 23 for the sandwich failure analyses and determining whether the 

laminate meets the first ply failure criterion.   

Element 22 and 33: Macro-Level Structural Design and Buckling Model 

Elements 22 and 23, in the middle level, optimize the mass of the composite 

sandwich panel treated as simply-supported rectangular sandwich plates under the 

combined in-plane loading defined by the membrane forces found in Element 11. 

Elements 22 and 23 optimize to prevent failure of the sandwich through optimization of 

the core and facesheet properties. The variables for this level are the volume fraction of 

the carbon fibers, the angles and thicknesses of each facesheet ply, 𝜃𝑖 and 𝑡𝑖, respectively, 

the foil thickness of the honeycomb core, 𝑡𝑐, the thickness of the core, ℎ𝑐, and the cell 

size of the honeycomb, 𝑆. These variables are defined graphically in Figure 7.7. 

 

Figure 7.7 Graphical definition of variables in the middle level 
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Each facesheet laminate is assumed to have 32 plies. The top and bottom face 

sheets are identical. For simplicity, the 32-layer facesheet is divided into four identical 

sub-stacks defined by 16 variables (i.e. 8 thicknesses and 8 orientation angles). This 

pattern is then replicated following the double symmetry to define all 32 plies. While the 

facesheet is certain to be symmetric, it may not be balanced. This choice of facesheet 

laminate design was dictated by the limitations of the laminate analysis code used in this 

research which was developed by Clements (1997). In a more general solution, there is 

no need to impose a limit on the facesheet ply pattern. 

The panels, as defined in Element 11, are from a swept, tapered wing, giving 

swept or oblique, tapered panels that have only one set of parallel sides (defined by the 

ribs) and no right angled corners. The laminate analysis code used in this element is for 

rectangular plates. To find a rectangular plate that closely approximates the actual wing 

panel, the parallel sides are averaged to give the short dimension, and the long dimension 

(the distance between the ribs) is maintained at 90 inches. This gives a rectangular plate 

of the same area and approximately the same dimensions as the original. An example of 

this transformation is shown in Figure 7.7 where the original panel 1 is shown in red 

outline and the rectangular approximation is shown in blue.  
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Figure 7.8 Comparison of the original panel 1 and its rectangular approximation 

Original panel 1 in red. Rectangular approximation for buckling analysis in blue. 

Oblique, tapered panels have different, but predictable, global buckling load and 

mode shape. Whittrick (1953) and Timoshenko and Gere (1961) provide the buckling 

analysis for simply supported oblique panels with sweep angles of 30o and 45o. The front 

edge sweep angle of the wing panels is 19.5o and the rear edge sweep is 16.3o for an 

average of 17.9o. There is no information for angles less than 30o; however, the buckling 

strength of an oblique panel with a sweep angle of 30o is shown to be 25 % less than a 

rectangular plate of the same area. Pope (1962) showed the effect of taper on a panel’s 

global buckling load. He showed that taper increases the stress required for global 

buckling when one side is reduced and the other maintains its original dimension. Using 

the data in that paper, it is estimated that the critical global buckling stress is increased by 
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a minimum of 10 % for panels of the geometry tested here, offsetting the reduction from 

the sweep. Given the geometry of the panels under consideration, the two effects will 

nearly or completely offset each other, so it is reasonable to approximate each wing panel 

as a rectangular plate in the way described above. The failure modes considered for the 

panel are first ply failure, plate buckling, shear crimping, facesheet dimpling, and 

facesheet wrinkling. 

First ply failure approach examines each ply in the laminate to determine failure 

using the selected failure criterion (e.g. max strain, Tsai-Hill, Tsai-Wu) (Agarwal et. al. 

2006, Vinson and Sierakowski 1986). In this case, the max strain failure criterion is used, 

which requires determination of the local strains in the principal material directions of 

each unidirectional ply and their comparison with the corresponding maximum strain 

allowables. The ultimate stresses are noted with the other material properties in Table 7.3. 

The material exhibits differing behavior in the longitudinal and transverse directions as 

well as in tension and compression; therefore, there are five different ultimate strain 

values calculated as 

 휀1𝑡𝑢
=

𝜎1𝑡𝑢

𝐸1
 ;    휀2𝑡𝑢

=
𝜎2𝑡𝑢

𝐸2
 ;    휀1𝑐𝑢

=
𝜎1𝑐𝑢

𝐸1
 ;    휀2𝑐𝑢

=
𝜎2𝑐𝑢

𝐸2
 ;    𝛾12𝑢

=
𝜏12𝑢

𝐺12
 (7.3) 

where subscripts 1 or 2 refer to the ply or in-plane principle and transverse direction, 

respectively, subscripts 𝑡 or 𝑐 refer to tensile or compressive, respectively, 휀 refers to 

normal strains, and 𝛾 refers to shear strain. Since there are two ultimate normal strains for 

each direction, the critical allowable is the one that matches the loading indicated by the 

sign of the calculated ply strain where a negative sign indicates compression.  
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Table 7.3  Material Properties for Face Sheet Components 

Carbon Fibers 
Property Symbol Value Units 
Elastic Modulus Ef 65,266.98 ksi 
Shear Modulus Gf 25,102.69 ksi 
Poisson’s Ratio νf   0.300 
Neat Matrix 
Property Symbol Value Units 
Elastic Modulus Em  507.63 ksi 
Shear Modulus Gm  203.62 ksi 
Poisson’s Ratio νm 0.300 
Matrix with 𝑽𝑪𝑵𝑭 = 𝟎. 𝟑 
Property Symbol Value Units 
Elastic Modulus ENEM 2,295.50 ksi 
Shear Modulus GNEM 882.88 ksi 
Poisson’s Ratio νNEM  0.247  
Constant Ply Properties 
Property Symbol Value Units 
Density ρc    124.4 lb ft3⁄  
Longitudinal Tensile Strengthσ1tu

    410.0 ksi 
Transverse Tensile Strength σ2tu

  7.1 ksi 
 Compressive Strength σ1cu

 -270.0 ksi 
Transverse Compressive Strength σ2cu

 -36.0 ksi 
Shear Strength τ12u

 12.0 ksi 
 
2024 Aluminum Alloy (Core material) 
Property Symbol Value Units 
Elastic Modulus Ec 10,000 ksi 
Shear Modulus Gc 3,846.15 ksi 
Poisson’s Ratio νc  0.300 

 

Global buckling is the buckling of the entire panel as a single unit. This buckling 

mode is defined primarily by the equivalent Young’s modulus of the facesheet and the 

moment of inertia of the panel in both the x and y directions. The moment of inertia, in 

turn, is controlled by the thickness and moduli of the individual plies and the thickness of 

the core. The principle of minimum total potential energy is used to find the buckling 
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loads (𝑁𝑥𝑐𝑟
, 𝑁𝑦𝑐𝑟

, 𝑁𝑥𝑦𝑐𝑟
) as described by Clements (1997) and Rais-Rohani and Marcellier 

(1999). The corresponding buckling stresses are found as  

 𝜎𝑥𝑐𝑟

𝑔𝑏
=

𝑁𝑥𝑔𝑏

2 𝑡𝑓𝑠
 ;      𝜎𝑦𝑐𝑟

𝑔𝑏
=

𝑁𝑦𝑔𝑏

2 𝑡𝑓𝑠
 ;      𝜏𝑥𝑦𝑐𝑟

𝑔𝑏
=

𝑁𝑥𝑦𝑔𝑏

2 𝑡𝑓𝑠
 (7.4) 

Shear crimping is caused by insufficient core shear stiffness resulting in localized 

core buckling and a crimp in the sandwich plate. The core permanently fails at the crimp 

meaning this is not an elastic buckling mode. The critical shear crimping stresses are 

found as (Bruhn 1973, Vinson and Sierakowski 1986) 

 𝜎𝑥𝑐𝑟
𝑠𝑐 =

2

3

𝑡𝑐 ℎ𝑐 𝐺𝑐

𝑆 𝑡𝑓𝑠
 ;  𝜎𝑦𝑐𝑟

𝑠𝑐 =
4

15

𝑡𝑐 ℎ𝑐 𝐺𝑐

𝑆 𝑡𝑓𝑠
 ;  𝜏𝑥𝑦𝑐𝑟

𝑠𝑐 = √
8

45

𝑡𝑐 ℎ𝑐 𝐺𝑐

𝑆 𝑡𝑓𝑠
 ; (7.5) 

where 𝐺𝑐 is the shear modulus of the core material (2024 Aluminum Alloy). The 

difference between the 𝑥 critical stress and the 𝑦 critical stress is that the panel is 

assumed to be oriented with the ribbon direction of the foil oriented in the 𝑥 direction. 

Here, Vinson and Sierakowski’s (1986) equations are used to calculate the effective core 

shear modulus resulting in a slightly lower critical 𝑥 stress and a transverse ribbon 

direction critical stress that is 40 % of the ribbon direction instead of Bruhn’s (1973) 

suggested 70 %.  Vinson and Sierakowski’s (1986) criteria for distinguishing global 

buckling from shear crimping are also used in this analysis as described by Clements 

(1997).  

Facesheet dimpling, also called intracell buckling, is a special type of local 

buckling in which the buckling “panel” is defined by the edges of the honeycomb cell. 

This mode usually occurs when the facesheet is thin compared to the honeycomb cell 

size. It derives its name from the small round buckling regions resembling the dimpled 
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surface of a golf ball. While this mode may not lead to catastrophic failure (Bruhn 1973 

& Vinson and Sierakowski 1986), it is considered in that way for this study, because it 

can also disturb the aerodynamic performance of the wing skin. The critical value is 

calculated as (Vinson and Sierakowski 1986) 

 𝜎𝑐𝑟
𝑖𝑏 =

2 √�̅�𝑥𝑥 �̅�𝑦𝑦

1−�̅�𝑥𝑦 �̅�𝑦𝑥
 (

𝑡𝑓𝑠

𝑆
)

2
 (7.6) 

where �̅�𝑥𝑥 and �̅�𝑦𝑦 are the approximate values of Young’s modulus in the x and y 

direction calculated using the in-plane stiffness matrix by the equations �̅�𝑥𝑥 =

𝐴11

𝑡𝑓𝑠
[1 −

𝐴12
2

𝐴11 𝐴22
] and �̅�𝑦𝑦 =

𝐴22

𝑡𝑓𝑠
[1 −

𝐴12
2

𝐴11 𝐴22
]. The A matrix used in these equations comes 

from classical lamination theory (Agarwal et al. 2006). 

Facesheet wrinkling is a local buckling of the face sheet in which part of the face 

sheet either rips away from the core or crushes the core. This mode usually occurs when 

the face sheets are insufficiently thin compared to the core thickness. The face sheets then 

buckle while the core does not causing the face sheets to separate from the core if the 

bond with the core is critical or crush the core if core compression is critical. The critical 

stress is defined as (Vinson and Sierakowski 1986)  

 𝜎𝑐𝑟
𝑤 = 𝜏𝑐𝑟

𝑤 = √
16 𝑡𝑓𝑠 𝑡𝑐 𝐸𝑐

′ √�̅�𝑥𝑥 �̅�𝑦𝑦

9 ℎ𝑐 𝑆 (1−�̅�𝑥𝑦 �̅�𝑦𝑥)
 (7.7) 

where 𝐸𝑐
′ is the core stiffness in the z direction calculated as 𝐸𝑐

′ = 2.13 (
3 𝑡𝑐

𝑆
)

1.416
 𝐸𝑐 

(Bruhn 1973). 
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Equations 7.3, 7.4, 7.5, 7.6, and 7.7 are implemented inside a FORTRAN code 

(Clements 1997) which considers each failure mode as a constraint and evaluates the 

mass of the panel. Each failure criterion has a set range of [−∞ , 1] where values greater 

than zero indicate safe designs. These failure mode evaluations are denoted here as 𝑔𝑓𝑝𝑓, 

𝑔𝑔𝑏, 𝑔𝑠𝑐, 𝑔𝑖𝑏, and 𝑔𝑤 for the constraints on first ply failure, global buckling, shear 

crimping, intracell buckling, and facesheet wrinkling, respectively.  

Only the critical panel is tested for each panel group with the critical panel being 

the most forward and closest to the root as shown in Figure 7.3. If the upper and lower 

skins are considered in the same group, the upper skin is considered the critical panel, 

since it is under compressive load and the composite is weaker in compression than in 

tension. The optimization problem in Elements 22 and 23 shown in Figure 7.3 are 

expressed as 

 min
𝑉𝐶𝐹,𝐸𝑁𝐸𝑀 ,𝜐𝑁𝐸𝑀,𝜃𝑖,𝑡𝑖,ℎ𝑐,𝑡𝑐,𝑆

𝑊𝑝𝑎𝑛𝑒𝑙 + 𝑤1 (
𝐸𝑁𝐸𝑀

𝑇 −𝐸𝑁𝐸𝑀
𝑚𝑖𝑛

𝐸𝑁𝐸𝑀
𝑚𝑎𝑥 −𝐸𝑁𝐸𝑀

𝑚𝑖𝑛 ) + 𝑤2𝑉𝐶𝐹 + 𝜋𝐸𝑃𝐹  

 𝑠. 𝑡.   𝑔𝑓𝑝𝑓 ≥ 0 

 𝑔𝑔𝑏 ≥ 0 

 𝑔𝑠𝑐 ≥ 0 

 𝑔𝑖𝑏 ≥ 0 (7.8) 

 𝑔𝑤 ≥ 0 

 0.25 ≤ 𝑉𝐶𝐹 ≤ 0.75;   500 ≤ 𝐸𝑁𝐸𝑀 ≤ 2,300 𝑘𝑠𝑖;   0.247 ≤ 𝜐𝑁𝐸𝑀 ≤ 0.3;   

 0.005 ≤ 𝑡𝑖 ≤ 0.6 𝑖𝑛;   −90𝑜 ≤ 𝜃𝑖 ≤ 90𝑜 ;   0.1 ≤ ℎ𝑐 ≤ 5.0 𝑖𝑛 ;   

 0.0007 ≤ 𝑡𝑐 ≤ 0.1 𝑖𝑛 ;   0.0625 ≤ 𝑆 ≤ 2.0 𝑖𝑛  
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where properties with the subscript NEM refer to those associated with the nano-

enhanced matrix whereas 𝑤1 and 𝑤2 are weights representing the manufacturing costs 

associated with increasing the volume fraction of the carbon nanofibers in the matrix 

(which causes an increase in the Young’s modulus at this level) or the volume fraction of 

the continuous carbon fibers reinforcing the nano-enhanced matrix.  

The exponential penalty function for Elements 22 and 23 is expressed as 

 𝜋𝐸𝑃𝐹 =
𝜇2 𝑗

𝑎2 𝑗
(𝑒𝑎2 𝑗 (𝒕2 𝑗−𝒓2 𝑗) − 1) +

𝛾2 𝑗

𝑏2 𝑗
(𝑒𝑏2 𝑗 (𝒓2 𝑗−𝒕2 𝑗) − 1)  

 +
𝜇3 𝑘

𝑎3 𝑘
(𝑒𝑎3 𝑘 (𝒕3 𝑘−𝒓3 𝑘) − 1) +

𝛾3 𝑘

𝑏3 𝑘
(𝑒𝑏3 𝑘 (𝒓3 𝑘−𝒕3 𝑘) − 1) 

  (7.9) 
 𝒕2 𝑗 = [𝐸𝑥𝑥

𝑇 , 𝐸𝑦𝑦
𝑇 , 𝐺𝑥𝑦

𝑇 , 𝑡𝑙𝑇];   𝒓2 𝑗 = [𝐸𝑥𝑥, 𝐸𝑦𝑦 , 𝐺𝑥𝑦, 𝑡𝑙];    𝒕3 𝑘 = [𝐸𝑁𝐸𝑀, 𝜈𝑁𝐸𝑀];    

 𝒓3 𝑘 = [𝐸𝑁𝐸𝑀
𝑅 , 𝜈𝑁𝐸𝑀

𝑅 ];    �̅�2 𝑗 = [𝑉𝐶𝐹 , 𝑡𝑖 , 𝜃𝑖 , ℎ𝑐 , 𝑡𝑐 , 𝑆] 

where 𝑗 = 𝑛𝑝𝑎𝑛𝑒𝑙 + 1 and 𝑘 = 2 𝑛𝑝𝑎𝑛𝑒𝑙 + 1, with 𝑛𝑝𝑎𝑛𝑒𝑙 as the number of panel groups, 

the superscripts 𝑇 and 𝑅 designate target and response values delivered from Element 11 

and Element 3𝑘, respectively, and the response moduli are the outputs of the laminate 

analysis code. 

Element 34 and 35: Micro-Level Material Model Analysis and Design 

In Element 34 and 35 at the bottom level in Figure 7.3, the matrix material is 

enhanced through the addition of carbon nano-fibers (CNFs). The purpose is to optimize 

the volume fraction of CNFs, 𝑉𝐶𝑁𝐹, to meet the target values for the Young’s modulus 

and Poisson’s ratio set in Elements 22 and 23. Though the optimization itself has a simple 

formulation, the model used to determine the Young’s modulus and Poisson’s ratio is 

quite complicated. 
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The model assumes randomly oriented wavy CNFs that are surrounded by a three-

dimensional interphase region with properties modeled using functionally graded 

representation. The general approach is based on Mori-Tanaka homogenization and 

Eshelby’s ellipsoidal inclusion model to find the effective modulus of the enhanced 

matrix (𝐸𝑁𝐸𝑀). Rouhi et al. (2010) examined the effects of volume fraction (𝑉𝐶𝑁𝐹) and 

aspect ratio on the enhanced modulus. One important point of examination in their work 

was the use of a non-homogenous interphase region, the portion of the matrix in very 

close proximity to the fiber that behaves differently than either the fiber or the matrix. 

They used the multi-inclusion approach developed by Nemat-Nasser and Hori (1993) to 

create “layers” of homogenous interphase region around the nano-fiber that give the 

effect of a non-homogenous interphase region. A property, 𝑃, for “layer” 𝛼 is given as 

 𝑃 = 𝑃𝑖𝑛 + (𝑃𝑜𝑢𝑡 − 𝑃𝑖𝑛) (
𝛼−1

𝑁
)

𝑛
 (7.10) 

where 𝑃𝑖𝑛 is the property’s value next to the nano-fiber, 𝑃𝑜𝑢𝑡 is the value of the property 

for the neat matrix, 𝑁 is the number of “layers” used in the simulation, and 𝑛 is the 

interphase variation parameter. 𝛼 varies from 1 to 𝑁 + 1 where 𝛼 = 1 is the layer closest 

to the nano fiber and 𝛼 = 𝑁+1 is outside the interphase. For this simulation 𝑃𝑖𝑛 was 

chosen as the value of the property for the nano-fiber. A linear variation of the parameter 

is represented by 𝑛 = 1. For more information on this model see Rouhi et al. (2010), 

Rouhi (2011), Rouhi and Rais-Rohani (2013), or DorMohammadi (2013). The values 

used in this analysis are shown in Table 7.4. 
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Table 7.4 Material Properties for Enhanced Matrix Components 

Neat Vinyl Ester Matrix 
Property Symbol Value Units 
Elastic Modulus Em  507.63 ksi 
Shear Modulus Gm  203.62 ksi 
Poisson’s Ratio νm 0.300 

 
Carbon Nanofibers 
Property Symbol Value Units 
Elastic Modulus ECNF  65,266.98 ksi 
Poisson’s Ratio νCNF    0.300 
Radius rCNF    0.5 μm 
Length LCNF   259 μm 
Waviness Length λCNF   150 μm 
Waviness Amplitude ACNF   50 μm 
 
Interphase Region 
Property Symbol Value Units 
Thickness Ratio tIP rCNF⁄    0.5  
Variation Parameter n   1    (Linear variation)  
Number of Homogenous Regions N    10 
Modulus for α = 1 Ein 65,266.98 ksi 
Modulus for α = N Eout   507.63  ksi 

 

The volume fraction of CNFs is the only variable at this level, and the only goal 

of the optimization is compliance with the target values. The only constraints are the side 

constraints on the CNF volume fraction. Thus, the objective function is merely the 

exponential penalty function and the optimization problem in Element 34 and 35 is 

formulated as  

 min
𝑉𝐶𝑁𝐹

 
𝜇3 𝑘

𝑎3 𝑘
(𝑒𝑎3 𝑘 (𝒕3 𝑘−𝒓3 𝑘) − 1) +

𝛾3 𝑘

𝑏3 𝑘
(𝑒𝑏3 𝑘 (𝒓3 𝑘−𝑡3 𝑘) − 1)  

 𝑠. 𝑡.   0 ≤ 𝑉𝐶𝑁𝐹 ≤ 0.3 (7.11) 

 𝒕3 𝑘 = [𝐸𝑁𝐸𝑀
𝑇 , 𝜈𝑁𝐸𝑀

𝑇 ];     𝒓3 𝑘 = [𝐸𝑁𝐸𝑀, 𝜈𝑁𝐸𝑀];     �̅�3 𝑘 = 𝑉𝐶𝑁𝐹 
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where the responses are the output of the NEM program for the given 𝑉𝐶𝑁𝐹. There is no 

weighting in the objective function at this level. The weighting function in Element 22 

and 23 with the target-response process makes it unnecessary. Current processing 

methods restrict the maximum volume fraction of nano fibers that can be added to a 

matrix while still increasing mechanical properties to less than 3 %. For this study, it is 

assumed that these manufacturing limitations do not exist. 

Optimization Framework and Results 

The decomposition of the optimization problem is shown in Figure 7.8. 

 

Figure 7.9 Hierarchical decomposition of the two section transport wing problem 
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The decomposed multilevel wing design optimization problem was organized and 

solved using VisualDOC (2012). This software provides the necessary tool for testing 

different optimization frameworks and allows for easy integration of multiple analysis 

programs and optimization methods within a specified framework. The solution process 

selected begins at the bottom level working upward to Element 11 at the top. Panel 1 is 

solved first starting with the NEM problem, Element 34, then moving to the sandwich 

panel, Element 22, followed by Panel 2 in the same order, and finally the wing level 

problem, Element 11. The workflow diagram is shown in Figure 7.9 using a screen 

capture from the main page of the VisualDOC software. 

 

Figure 7.10 The VisualDOC workflow for the Transport Aircraft Wing Optimization  
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Since the optimization algorithm is performing a non-physics based search trying 

to optimize the moduli of the panel, the panels at this level can take on unrealistic sets of 

moduli. The moduli are brought back to realistic values through the optimization by the 

targets and responses set at different levels by physics based models. By solving the 

panels before the wing, a realistic response is established for the wing level target to 

match. The relaxed formulation of the consistency constraint allows the wing level 

problem to set targets that benefit the wing level, but are still close to a realistic value. 

The wing-level problem in Element 11 uses the gradient-based Modified Method 

of Feasible Directions (MMFD) optimization algorithm. The forward difference method 

is used to calculate the gradients. This element uses NASTRAN to analyze the finite 

element model. Also, MATLAB scripts, modified from those used by Parrish (2014), 

were used to write the input file for the NASTRAN analysis and read the output files to 

find the rib and spar stresses, the wing deflections, and the panels’ membrane forces. 

The panel level problems in Elements 22 and 23 use the gradient-based Sequential 

Linear Programming (SLP) optimization algorithm. Even though this algorithm is not as 

efficient as MMFD, it is more robust than MMFD which is needed because the 

constraints at this level have unperceivable or no gradient over parts of the design space. 

This element referenced the laminate analysis Fortran code written by Clements (1997). 

The input and output files for this analysis are much simpler, and therefore use a 

VisualDOC to modify a template of the input file and find the relevant data in the output 

file. 

The nano-enhanced matrix level problem in Elements 34 and 35 also uses MMFD 

with the analysis routine written in a MATLAB script by Rouhi (2011).  
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The double loop approach was used on this problem due to its robustness. While a 

single loop formulation might be faster, its greater sensitivity to initial weights and 

multipliers is undesirable as even the double loop was quite sensitive. The tolerance for 

this problem was set at 𝜏 = 0.01 for both the inner and outer loops. The EPF formulation 

used initial multipliers of 𝝁𝑖𝑗 = 𝜸𝑖𝑗 = 1 for all multipliers.  

An initial weight of 𝒂𝑖𝑗 = 𝒃𝑖𝑗 = 1 was used for the Element 22/Element 34 and 

Element 23/Element 35 interactions with that being increased to 1.2 for the Element 

11/Element 22 and the Element 11/Element 23 interactions due to more specialized, very 

different solutions to each level’s problem. An updating factor of 𝛽 = 1.2 was used. This 

unique set of initial weights and updating factor values was derived from trial and error. 

It was discovered during the implementation process that the critical constraints for the 

problem were allowable wing twist at the top level and global buckling and first ply 

failure in the sandwich plate level. The solution to the top level problem was panels with 

high shear stiffness. The solution to the sandwich plate level problem was panels with 

plies oriented mainly in the direction of maximum loading (i.e., panels with a high 

longitudinal stiffness in the primary loading direction).  It was found that if the initial 

weights and updating factors were too low, the inner and outer loops would converge to a 

solution without proper target-response coordination. Conversely, if the initial weights or 

updating factors were too high, the problem would initially converge. The updater would 

then update the multipliers to force convergence. Because the updating of the multipliers 

is heavily dependent on the weights, they would be updated to values that caused them to 

push too hard. The targets would then overshoot the responses and vice versa. This led to 

a divergent oscillation of the targets and responses. Thus, the initial weights and updating 
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factors needed to be carefully selected for this problem. This phenomenon was not 

observed in any other problem tested. 

The initial values for the wing are reported in Table 7.5 and the initial values for 

the panels are reported in Table 7.6. Though both panels are vastly different, they used 

the same initial values. The initial design point does not meet all stated constraints for 

this problem, so it is not an accurate comparison to compare it to the optimized wing. 

Without uncertainty, meeting the constraints is not a requirement of the initial point.  The 

variables for the optimized wing are also shown in Table 7.5 and two optimum panels are 

shown in Table 7.6. Since the top level problem solved here is merely a sub-problem of 

the one solved by Garcelon et. al (1999), Venter and Sobieszczanski-Sobieski (2006), and 

Parrish (2014), there is no published data on the objective function to use for comparison.  

Table 7.5 Design variable values for Element 11 

Design Variable Lower Bound Initial Value Optimum Upper Bound Units 
Panel Group 1 

𝐸𝑥𝑥 675.09 14,894.85 3,983.21 49,524.11 ksi 
𝐸𝑦𝑦 675.09 14,894.85 2,212.97 49,524.11 ksi 
𝐺𝑥𝑦 270.77 5,899.12 7,804.64 18,920.02 ksi 
𝑡𝑓𝑠 0.189 0.4 0.189 4.0 in 

Panel Group 2 
𝐸𝑥𝑥 675.09 14,894.85 1,890.38 49,524.11 ksi 
𝐸𝑦𝑦 675.09 14,894.85 7,164.03 49,524.11 ksi 
𝐺𝑥𝑦 270.77 5,899.12 4,321.02 18,920.02 ksi 
𝑡𝑓𝑠 0.157 0.4 0.157 4.0 in 

Spar/Rib Group 1 
𝑡𝑠 0.394 0.43 1.043 5.0 in 
𝑡𝑟 0.197 0.2 0.197 4.0 in 

Spar/Rib Group 2 
𝑡𝑠 0.394 0.43 0.836 5.0 in 
𝑡𝑟 0.118 0.122 0.127 4.0 in 

Wing Weight 3,505.89 5,883.14 4,755.49 - lb 
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Table 7.6 Design variable values of the optimized panels 

Design 
Variable 

Lower 
Bound 

Initial 
Value Panel 1 Opt Panel 2 Opt Upper 

Bound Units 

𝑉𝐶𝑁𝐹 0.001 0.1 0.0610 0.0013 0.3 - 
𝑉𝐶𝐹 0.25 0.3 0.4844 0.6488 0.75 - 

𝐸𝑁𝐸𝑀 507.63 725 891.3 512.4 2,295.5 ksi 
𝜈𝑁𝐸𝑀 0.2465 0.27 0.2721 0.2991 0.3 - 

𝑡1 0.005 * 0.12 0.006 0.005 0.6 Inches 
𝑡2 0.005 * 0.12 0.006 0.005 0.6 Inches 
𝑡3 0.005 * 0.12 0.006 0.005 0.6 Inches 
𝑡4 0.005 * 0.12 0.006 0.005 0.6 Inches 
𝑡5 0.005 * 0.12 0.006 0.005 0.6 Inches 
𝑡6 0.005 * 0.12 0.006 0.005 0.6 Inches 
𝑡7 0.005 * 0.12 0.006 0.005 0.6 Inches 
𝑡8 0.005 * 0.12 0.006 0.005 0.6 Inches 
𝜃1 -90 0 -38.6 -15.3 90 Degrees 
𝜃2 -90 -45 -48.6 -15.6 90 Degrees 
𝜃3 -90 45 40.7 -8.4 90 Degrees 
𝜃4 -90 90 40.7 80.9 90 Degrees 
𝜃5 -90 90 42.1 33.0 90 Degrees 
𝜃6 -90 45 35.7 -8.8 90 Degrees 
𝜃7 -90 -45 -48.6 -38.0 90 Degrees 
𝜃8 -90 0 -38.2 -38.0 90 Degrees 
ℎ𝑐 0.1 0.5 0.1014 0.1 5.0 Inches 
𝑆 0.0625 0.5 0.0625 0.0625 5.0 Inches 
𝑡𝑐 0.0007 0.003 0.0007 0.0007 0.01 Inches  

Weight - - 91.23 52.51 - Pounds  
A lower bound of 0.006 inches was used for panel group 1 (the inboard group) 

These results show the difference in the optimal approach to the two panels. Due 

to their location in the wing, the panels have two very different loadings which lead to 

very different optimal layups. It is also noted that the optimum ply thicknesses are all at 

their minimum values and that several plies share a common orientation. This indicates 

that a reduction in the number of plies would be beneficial. Unfortunately, this avenue 

cannot be properly explored using the sandwich plate analysis software currently 

available for this problem. It is also interesting to note that the outboard portion of the 
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wing had a higher optimal volume fraction of continuous carbon fibers. Even though the 

ply thicknesses were allowed to be thinner in that portion of the wing, the loading is also 

lower. Another interesting result is the low volume fraction of the carbon nano-fibers 

compared to the allowable maximum. The enhancements provided by increased 𝑉𝐶𝑁𝐹 are 

outweighed by the artificial cost factor added in Level 2 of this problem. 

In total, this problem took approximately 189,000 seconds (= 52.55 hours = 2.19 

days) to execute. In comparison, the multilevel sandwich plate reported by 

DorMohammadi (2013) took 6 hours. For the wing problem, 3 outer loops, 10 inner 

loops, 392 function calls to the NEM program, 25,403 calls to the sandwich plate 

analysis, and 2,183 FE analyses were completed. The all-at-once formulation of this 

problem is expected to take weeks of computational time. The large gain in 

computational efficiency comes from the concentration of the majority of the variables in 

the element with the cheap sandwich plate analysis and the isolation of the costly NEM 

analysis in Elements 34 and 35 where there is only one design variable.  

Table 7.7 shows the 12 target-response pairs for this formulation, and their 

normalized consistency constraint values. This table shows that a coordinated result was 

achieved by the optimization and that this solution is valid. If these were not converged, 

the solution would not have any physical relevance. The normalized consistency 

constraint shows that all target-response pairs were close to the set tolerance with most 

being below tolerance. Though this was not imposed as a requirement for convergence, it 

shows the quality of the result.  
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Table 7.7 Target and response values for the transport aircraft wing problem 

Value Target Response Units Consistency 
Constraint 

Element 11 & 22 (Inboard panel group) 
𝐸𝑥𝑥 3,983.21 3,675.10 ksi 0.0102 
𝐸𝑦𝑦 2,212.97 2,542.50 ksi -0.0110 
𝐺𝑥𝑦 7,804.64 7,694.80 ksi 0.0037 
𝑡𝑙 0.2903 0.293 in -0.0006 

Element 11 & 23 (Outboard panel group) 
𝐸𝑥𝑥 18,903.81 18,848.00 ksi 0.0019 
𝐸𝑦𝑦 7,164.03 7,404.30 ksi -0.0080 
𝐺𝑥𝑦 4,321.02 3,965.3 ksi 0.0119 
𝑡𝑙 0.2575 0.2600 in -0.0005 

Element 22 & 34 (Inboard spar/rib group) 
𝐸𝑁𝐸𝑀 868.65 891.25 ksi -0.0126 
𝜈𝑁𝐸𝑀 0.2719 0.272 - -0.0042 

Element 23 & 35 (Outboard spar/rib group) 
𝐸𝑁𝐸𝑀 515.24 512.37 ksi 0.0016 
𝜈𝑁𝐸𝑀 0.2991 0.2991 - 0.0004 
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CHAPTER VIII 

CONCLUSIONS AND FUTURE WORK 

A method was developed for multilevel design optimization of hierarchical 

systems with epistemic uncertainty using evidence theory. The Evidence-Based 

Multilevel Design Optimization (EBMLDO) method was then used to solve several non-

deterministic optimization problems using analytical functions affected by interval-based 

uncertainty. The results showed that the solution time increased significantly due to the 

addition of uncertainty, and the optimum objective function values became more 

conservative since uncertainty forces the optimum design point to be farther away from 

the constraint boundaries in comparison to the deterministic solution.  

The EBMLDO method was used to explore the effect of belief structure 

associated with the uncertain variables on the optimized solution. A number of different 

belief structures of various forms were tested to identify the effect of the belief structure 

on the optimized solutions. Once the effect of various changes to the belief structure was 

observed, it was theorized that the most significant aspect of a belief structure was its 

cumulative plausibility function failure. This theory was tested by creating different 

belief structures that produced the same cumulative plausibility function as the original 

belief structure. Then, two theories on the reduction of computational cost were tested by 

creating a third belief structure to determine if the same results as the original belief 
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structure could be obtained. This structure did and with a significant reduction in 

computational costs traced to both theories being tested. 

The Transport Aircraft Wing (TAW) example was solved using decomposed 

multilevel optimization. This problem is more complex than those involving analytical 

functions and it’s solution displayed the power of the multilevel framework to solve 

complex problems in an efficient manner. This problem includes several “black box” 

analyses that show the system is able to handle these complex types of analyses.  

Future work on multilevel optimization will be to team with industry to solve 

problems for actual products. Researchers can create increasingly more complex 

problems to solve with ATC, but until it is implemented on an actual product, the method 

will not be viewed as mature. This work shows that necessary groundwork is in place to 

make this next step. 

Multilevel optimization under epistemic uncertainty is still an evolving field. The 

methods set forth in this thesis need to undergo further testing and refinement. Additional 

refinement is needed to decrease the computational costs. A large step in that effort 

would be a method that would allow the use of a gradient based optimization algorithm. 

Another would be a method to calculate the plausibility of failure more efficiently. 

Eventually, EBMLDO needs to become more computationally efficient to solve problems 

such as the TAW problem under epistemic uncertainty.  

Other questions remain in design optimization under uncertainty. There is a large 

debate as to whether RBDO has to make too many assumptions to produce a viable 

answer. Some propose using a more complex version of RBDO, while others think that 

different uncertainty quantification methods should be employed. I believe the answer 
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will only come out through having several experts use several of these methods to solve 

the same simple, real world problems. Data needs to be collected on these problems as it 

would for an actual problem, with increasing size of the data sets used to quantify the 

uncertainty. This will allow the assumptions about epistemic uncertainty in the 

techniques that handle that uncertainty to be tested. Then, these real world problems must 

be tested a large number of times to gain statistical data on the solution and determine 

which method returned the most accurate solution. This method has been used before in 

fatigue testing, but it is quite a costly undertaking. However, I believe it is the only way 

to answer this question.    
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